ﻻ يوجد ملخص باللغة العربية
We present spectroscopic confirmation of three new two-image gravitationally lensed quasars, compiled from existing strong lens and X-ray catalogs. Images of HSC J091843.27$-$022007.5 show a red galaxy with two blue point sources at either side, separated by 2.26 arcsec. This system has a source and a lens redshifts $z_s=0.804$ and $z_{ell}=0.459$, respectively, as obtained by our follow-up spectroscopic data. CXCO J100201.50$+$020330.0 shows two point sources separated by 0.85 arcsec on either side of an early-type galaxy. The follow-up spectroscopic data confirm the fainter quasar has the same redshift with the brighter quasar from the SDSS fiber spectrum at $z_s=2.016$. The deflecting foreground galaxy is a typical early-type galaxy at a redshift of $z_{ell}=0.439$. SDSS J135944.21$+$012809.8 has two point sources with quasar spectra at the same redshift $z_s=1.096$, separated by 1.05 arcsec, and fits to the HSC images confirm the presence of a galaxy between these. These discoveries demonstrate the power of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)s deep imaging and wide sky coverage. Combined with existing X-ray source catalogues and follow-up spectroscopy, the HSC-SSP provides us unique opportunities to find multiple-image quasars lensed by a foreground galaxy.
Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. We use Chitah to hunt for new lens systems in the Hyper Suprime$-$Cam Subaru Strategic Program (HSC SSP) S16A. We present 46 lens candidates, of whi
We report the largest sample of candidate strong gravitational lenses belonging to the Survey of Gravitationally-lensed Objects in HSC Imaging for group-to-cluster scale (SuGOHI-c) systems. These candidates are compiled from the S18A data release of
Strong lenses are extremely useful probes of the distribution of matter on galaxy and cluster scales at cosmological distances, but are rare and difficult to find. The number of currently known lenses is on the order of 1,000. We wish to use crowdsou
Context: The determination of the stellar initial mass function (IMF) of massive galaxies is one of the open problems in cosmology. Strong gravitational lensing is one of the few methods that allow us to constrain the IMF outside of the Local Group.