ﻻ يوجد ملخص باللغة العربية
A higher-order topological insulator is a new concept of topological states of matter, which is characterized by the emergent boundary states whose dimensionality is lower by more than two compared with that of the bulk, and draws a considerable interest. Yet, its robustness against disorders is still unclear. Here we investigate a phase diagram of higher-order topological insulator phases in a breathing kagome model in the presence of disorders, by using a state-of-the-art machine learning technique. We find that the corner states survive against the finite strength of disorder potential as long as the energy gap is not closed, indicating the stability of the higher-order topological phases against the disorders.
In this work, we study the disorder effects on the bulk-boundary correspondence of two-dimensional higher-order topological insulators (HOTIs). We concentrate on two cases: (i) bulk-corner correspondence, (ii) edge-corner correspondence. For the bulk
We study the disorder-induced phase transition of higher-order Weyl semimetals (HOWSMs) and the fate of the topological features of disordered HOWSMs. We obtain a global phase diagram of HOWSMs according to the scaling theory of Anderson localization
We study the characterization and realization of higher-order topological Anderson insulator (HOTAI) in non-Hermitian systems, where the non-Hermitian mechanism ensures extra symmetries as well as gain and loss disorder.We illuminate that the quadrup
We study coherent wave scattering through waveguides with a step-like surface disorder and find distinct enhancements in the reflection coefficients at well-defined resonance values. Based on detailed numerical and analytical calculations, we can una
The quantum phase transition between two clean, non interacting topologically distinct gapped states in three dimensions is governed by a massless Dirac fermion fixed point, irrespective of the underlying symmetry class, and this constitutes a remark