ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of the irradiation technique used for the external beam radiotherapy of retinoblastoma

135   0   0.0 ( 0 )
 نشر من قبل Antonio M. Lallena
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: Retinoblastoma (RB) is the most common eye tumor in childhood and can be treated external radiotherapy. The purpose of this work is to evaluate the adequacy of Monte Carlo simulations and the accuracy of a commercial treatment planning system by means of experimental measurements. Dose measurements in water were performed using a dedicated collimator. Methods: A 6MV Varian Clinac 2100 C/D and a dedicated collimator are used for RB treatment. The collimator conforms a D-shaped off-axis field whose irradiated area can be either 5.2 or 3.1cm$^2$. Depth dose distributions and lateral profiles were measured and compared with Monte Carlo simulations run with PENELOPE and with calculations performed with the analytical anisotropic algorithm (AAA) using the gamma test. Results: PENELOPE simulations agree well with the experimental data with discrepancies in the dose profiles less than 3mm of distance-to-agreement and 3% of dose. Discrepancies between the results of AAA and the experimental data reach 3mm and 6%. The agreement in the penumbra region between AAA and the experiment is noticeably worse than that between the latter and PENELOPE. The percentage of voxels passing the gamma test when comparing PENELOPE (AAA) and the experiment is on average 99% (93%) assuming a 3mm distance-to-agreement and a discrepancy of 3% of dose. Conclusions: Although the discrepancies between AAA and experimental results are noticeable, it is possible to consider this algorithm for routine treatment planning of RB patients, provided the limitations of the algorithm are known and taken into account by the medical physicist. Monte Carlo simulation is essential for knowing these limitations. Monte Carlo simulation is required for optimizing the treatment technique and the dedicated collimator.



قيم البحث

اقرأ أيضاً

Purpose: To investigate the validity of two Monte Carlo simulation absolute dosimetry approaches in the case of a small field dedicated `D-shaped collimator used for the retinoblastoma treatment with external photon beam radiotherapy. Methods: The Monte Carlo code {sc penelope} is used to simulate the linac, the dedicated collimator and a water phantom. The absolute doses (in Gy per monitor unit) for the field sizes considered are obtained within the approach of Popescu {it et al.} in which the tallied backscattered dose in the monitor chamber is accounted for. The results are compared to experimental data, to those found with a simpler Monte Carlo approximation for the calculation of absolute doses and to those provided by the analytical anisotropic algorithm. Our analysis allows for the study of the simulation tracking parameters. Two sets of parameters have been considered for the simulation of the particle transport in the linac target. Results: The change in the tracking parameters produced non-negligible differences, of about 10% or larger, in the doses estimated in reference conditions. The Monte Carlo results for the absolute doses differ from the experimental ones by 2.6% and 1.7% for the two parameter sets for the collimator geometries analyzed. For the studied fields, the simpler approach produces absolute doses that are statistically compatible with those obtained with the approach of Popescu {it et al.} The analytical anisotropic algorithm underestimates the experimental absolute doses with discrepancies larger than those found for Monte Carlo results. Conclusions: The approach studied can be considered for absolute dosimetry in the case of small, `D-shaped and off-axis radiation fields. However, a detailed description of the radiation transport in the linac target is mandatory for an accurate absolute dosimetry.
151 - Nobuyuki Kanematsu 2010
A broad-beam-delivery system for heavy-charged-particle radiotherapy often employs multiple collimators and a range-compensating filter, which potentially offer complex beam customization. In treatment planning, it is however difficult for a conventi onal pencil-beam algorithm to deal with these structures due to beam-size growth during transport. This study aims to resolve the problem with a novel computational model. The pencil beams are initially defined at the range compensating filter with angular-acceptance correction for the upstream collimators followed by the range compensation effects. They are individually transported with possible splitting near the downstream collimator edges to deal with its fine structure. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will complete an accurate and efficient dose-calculation algorithm for treatment planning with heavy charged particles.
A model for beam customization with collimators and a range-compensating filter based on the phase-space theory for beam transport is presented for dose distribution calculation in treatment planning of radiotherapy with protons and heavier ions. Ind ependent handling of pencil beams in conventional pencil-beam algorithms causes unphysical collimator-height dependence in the middle of large fields, which is resolved by the framework comprised of generation, transport, collimation, regeneration, range-compensation, and edge-sharpening processes with a matrix of pencil beams. The model was verified to be consistent with measurement and analytic estimation at a submillimeter level in penumbra of individual collimators with a combinational-collimated carbon-ion beam. The model computation is fast, accurate, and readily applicable to pencil-beam algorithms in treatment planning with capability of combinational collimation to make best use of the beam-customization devices.
Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear $511 kiloelectronvolt$ photons produced by positrons annihilation from $beta^+$ emitters created by the beam. This paper reports rate measurements of the $511 kiloelectronvolt$ photons emitted after the interactions of a $80 megaelectronvolt / u$ fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a Poly-methyl methacrylate target. The time evolution of the $beta^+$ rate was parametrized and the dominance of $^{11}C$ emitters over the other species ($^{13}N$, $^{15}O$, $^{14}O$) was observed, measuring the fraction of carbon ions activating $beta^+$ emitters $A_0=(10.3pm0.7)cdot10^{-3}$. The average depth in the PMMA of the positron annihilation from $beta^+$ emitters was also measured, $D_{beta^+}=5.3pm1.1 millimeter$, to be compared to the expected Bragg peak depth $D_{Bragg}=11.0pm 0.5 millimeter$ obtained from simulations.
Carbon-ion radiotherapy (CIRT) is generally evaluated with the dose weighted by relative biological effectiveness (RBE), while the radiation quality varying in the body of each patient is ignored for lack of such distribution. In this study, we attem pted to develop a method to estimate linear energy transfer (LET) for a treatment planning system that only handled physical and RBE-weighted doses. The LET taken from a database of clinical broad beams was related to the RBE per energy with two polyline fitting functions for spread-out Bragg peak (SOBP) and for entrance depths, which would be selected by RBE threshold per energy per modulation. The LET estimation was consistent with the original calculation typically within a few keV/{mu}m except for the overkill at the distal end of SOBP. The CIRT treatments can thus be related to the knowledge obtained in radiobiology experiments that used LET to represent radiation quality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا