ﻻ يوجد ملخص باللغة العربية
We investigate the spectral properties of a class of hard-wall bounded systems, described by potentials exhibiting domain-wise different local symmetries. Tuning the distance of the domains with locally symmetric potential from the hard wall boundaries leads to extrema of the eigenenergies. The underlying wavefunction becomes then an eigenstate of the local symmetry transform in each of the domains of local symmetry. These extrema accumulate towards eigenenergies which do not depend on the position of the potentials inside the walls. They correspond to perfect transmission resonances of the associated scattering setup, obtained by removing the hard walls. We argue that this property characterizes the duality between scattering and bounded systems in the presence of local symmetries. Our findings are illustrated at hand of a numerical example with a potential consisting of two domains of local symmetry, each one comprised of Dirac ? barriers.
E.V. Kozik and B.V. Svistunov (KS) paper Symmetries and Interaction Coefficients of Kelvin waves, arXiv:1006.1789v1, [cond-mat.other] 9 Jun 2010, contains a comment on paper Symmetries and Interaction coefficients of Kelvin waves, V. V. Lebedev and V
We give a new perspective on the homological characterisations of amenability given by Johnson in the context of bounded cohomology and by Block and Weinberger in the context of uniformly finite homology. We examine the interaction between their theo
PT-symmetric scattering systems with balanced gain and loss can undergo a symmetry-breaking transition in which the eigenvalues of the non-unitary scattering matrix change their phase shifts from real to complex values. We relate the PT-symmetry brea
BMS symmetries have been attracting a great deal of interest in recent years. Originally discovered as being the symmetries of asymptotically flat spacetime geometries at null infinity in General Relativity, BMS symmetries have also been shown to exi
A widely used approximation to the exchange-correlation functional in density functional theory is the local density approximation (LDA), typically derived from the properties of the homogeneous electron gas (HEG). We previously introduced a set of a