ﻻ يوجد ملخص باللغة العربية
E.V. Kozik and B.V. Svistunov (KS) paper Symmetries and Interaction Coefficients of Kelvin waves, arXiv:1006.1789v1, [cond-mat.other] 9 Jun 2010, contains a comment on paper Symmetries and Interaction coefficients of Kelvin waves, V. V. Lebedev and V. S. Lvov, arXiv:1005.4575, 25 May 2010. It relies mainly on the KS text Geometric Symmetries in Superfluid Vortex Dynamics}, arXiv:1006.0506v1 [cond-mat.other] 2 Jun 2010. The main claim of KS is that a symmetry argument prevents linear in wavenumber infrared asymptotics of the interaction vertex and thereby implies locality of the Kelvin wave spectrum previously obtained by these authors. In the present note we reply to their arguments. We conclude that there is neither proof of locality nor any refutation of the possibility of linear asymptotic behavior of interaction vertices in the texts of KS.
We derive a type of kinetic equation for Kelvin waves on quantized vortex filaments with random large-scale curvature, that describes step-by-step (local) energy cascade over scales caused by 4-wave interactions. Resulting new energy spectrum $ESb{LN
We report the observation of capillary wave turbulence on the surface of a fluid layer in a low-gravity environment. In such conditions, the fluid covers all the internal surface of the spherical container which is submitted to random forcing. The su
We investigate the spectral properties of a class of hard-wall bounded systems, described by potentials exhibiting domain-wise different local symmetries. Tuning the distance of the domains with locally symmetric potential from the hard wall boundari
We have used two types of thermometry to study thermal fluctuations in a microcantilever-based system below 1 K. We measured the temperature of a cantilevers macroscopic degree-of-freedom (via the Brownian motion of its lowest flexural mode) and its
This paper reports results of the computation of the drag force exerted on an oscillating object in quantum turbulence in superfluid $^4$He. The drag force is calculated on the basis of numerical simulations of quantum turbulent flow about the object