ﻻ يوجد ملخص باللغة العربية
Bipartite operations underpin both classical communication and entanglement generation. Using a superposition of classical messages, we show that the capacity of a two-qubit operation for error-free entanglement-assisted bidirectional classical communication can not exceed twice the entanglement capability. In addition we show that any bipartite two-qubit operation can increase the communication that may be performed using an ensemble by twice the entanglement capability.
As the hyperentanglement of photon systems presents lots of unique opportunities in high-capacity quantum networking, the hyperentanglement purification protocol (hyper-EPP) becomes a vital project work and the quality of its accomplishment attracts
We study the task of entanglement distillation in the one-shot setting under different classes of quantum operations which extend the set of local operations and classical communication (LOCC). Establishing a general formalism which allows for a stra
Recently, several schemes for the experimental creation of Dicke states were described. In this paper, we show that all the $n$-qubit symmetric Dicke states with $l$ ($2leq lleq (n-2)$) excitations are inequivalent to the $% |GHZ>$ state or the $|W>$
In a recent paper [Phys. Rev. A 76, 032304(2007)], Li et al. proposed the definition of the residual entanglement for n qubits by means of the Stochastic local operations and classical communication. Here we argue that their definition is not suitable for the case of odd-n qubits.
A simple two-qubit model showing Quantum Phase Transitions as a consequence of ground state level crossings is studied in detail. Using the Concurrence of the system as an entanglement measure and heat capacity as a marker of thermodynamical properti