ﻻ يوجد ملخص باللغة العربية
Microresonator Kerr frequency combs, which rely on third-order nonlinearity ($chi^{(3)}$), are of great interest for a wide range of applications including optical clocks, pulse shaping, spectroscopy, telecommunications, light detection and ranging (LiDAR) and quantum information processing. Many of these applications require further spectral and temporal control of the generated frequency comb signal, which is typically accomplished using additional photonic elements with strong second-order nonlinearity ($chi^{(2)}$). To date these functionalities have largely been implemented as discrete off-chip components due to material limitations, which come at the expense of extra system complexity and increased optical losses. Here we demonstrate the generation, filtering and electro-optic modulation of a frequency comb on a single monolithic integrated chip, using a thin-film lithium niobate (LN) photonic platform that simultaneously possesses large $chi^{(2)}$ and $chi^{(3)}$ nonlinearities and low optical losses. We generate broadband Kerr frequency combs using a dispersion-engineered high quality factor LN microresonator, select a single comb line using an electrically programmable add-drop filter, and modulate the intensity of the selected line. Our results pave the way towards monolithic integrated frequency comb solutions for spectroscopy data communication, ranging and quantum photonics.
Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultra-violet and can link an unknown optical frequency to a radio or microwave frequency reference. Since their inception frequency combs have triggered major
We demonstrate Kerr-frequency-comb generation with nanofabricated Fabry-Perot resonators with photonic-crystal-reflector (PCR) end mirrors. The PCR group-velocity-dispersion (GVD) is engineered to counteract the strong normal GVD of a rectangular wav
Nonreciprocal devices such as isolators and circulators are key enabling technologies for communication systems, both at microwave and optical frequencies. While nonreciprocal devices based on magnetic effects are available for free-space and fibre-o
Microresonator-based soliton frequency combs - microcombs - have recently emerged to offer low-noise, photonic-chip sources for optical measurements. Owing to nonlinear-optical physics, microcombs can be built with various materials and tuned or stab
Microcavity solitons enable miniaturized coherent frequency comb sources. However, the formation of microcavity solitons can be disrupted by stimulated Raman scattering (SRS), particularly in the emerging crystalline microcomb materials with high Ram