ﻻ يوجد ملخص باللغة العربية
Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultra-violet and can link an unknown optical frequency to a radio or microwave frequency reference. Since their inception frequency combs have triggered major advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing8 and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation while to date frequency combs are generated utilizing the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here, we report an entirely novel approach in which equally spaced frequency markers are generated from a continuous wave (CW) pump laser of a known frequency interacting with the modes of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain enables the generation of discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3*10(-18).
Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric
We have investigated parametric seeding of a microresonator frequency comb (microcomb) by way of a pump laser with two electro-optic-modulation sidebands. We show that the pump-sideband spacing is precisely replicated throughout the microcombs optica
We demonstrate control and stabilization of an optical frequency comb generated by four-wave mixing in a monolithic microresonator with a mode spacing in the microwave regime (86 GHz). The comb parameters (mode spacing and offset frequency) are contr
We report on the fabrication of high-Q, fused-quartz microresonators and the parametric generation of a frequency comb with 36 GHz line spacing using them. We have characterized the intrinsic stability of the comb in both the time and frequency domai
Microresonator Kerr frequency combs, which rely on third-order nonlinearity ($chi^{(3)}$), are of great interest for a wide range of applications including optical clocks, pulse shaping, spectroscopy, telecommunications, light detection and ranging (