ﻻ يوجد ملخص باللغة العربية
In this article, by making use of the linear operator introduced and studied by Srivastava and Attiya cite{srivastava1}, suitable classes of admissible functions are investigated and the dual properties of the third-order differential subordinations are presented. As a consequence, various sandwich-type theorems are established for a class of univalent analytic functions involving the celebrated Srivastava-Attiya transform. Relevant connections of the new results are pointed out.
In this article, we wish to establish some first order differential subordination relations for certain Carath{e}odory functions with nice geometrical properties. Moreover, several implications are determined so that the normalized analytic function
In this paper we introduce and study two new subclasses Sigma_{lambdamu mp}(alpha,beta)$ and $Sigma^{+}_{lambdamu mp}(alpha,beta)$ of meromorphically multivalent functions which are defined by means of a new differential operator. Some results connec
We introduce the Schur class of functions, discrete analytic on the integer lattice in the complex plane. As a special case, we derive the explicit form of discrete analytic Blaschke factors and solve the related basic interpolation problem.
The Bohr radius for a class $mathcal{G}$ consisting of analytic functions $f(z)=sum_{n=0}^{infty}a_nz^n$ in unit disc $mathbb{D}={zinmathbb{C}:|z|<1}$ is the largest $r^*$ such that every function $f$ in the class $mathcal{G}$ satisfies the inequalit
In this paper, we prove that slice polyanalytic functions on quaternions can be considered as solutions of a power of some special global operator with nonconstant coefficients as it happens in the case of slice hyperholomorphic functions. We investi