ﻻ يوجد ملخص باللغة العربية
As a consequence of superradiant instability induced in Kerr black holes, ultra-light boson clouds can be a source of persistent gravitational waves, potentially detectable by current and future gravitational-wave detectors. These signals have been predicted to be nearly monochromatic, with a small steady frequency increase (spin-up), but given the several assumptions and simplifications done at theoretical level, it is wise to consider, from the data analysis point of view, a broader class of gravitational signals in which the phase (or the frequency) slightly wander in time. Also other types of sources, e.g. neutron stars in which a torque balance equilibrium exists between matter accretion and emission of persistent gravitational waves, would fit in this category. In this paper we present a robust and computationally cheap analysis pipeline devoted to the search of such kind of signals. We provide a full characterization of the method, through both a theoretical sensitivity estimation and through the analysis of syntethic data in which simulated signals have been injected. The search setup for both all-sky searches and higher sensitivity directed searches is discussed.
Ultralight bosons can form large clouds around stellar-mass black holes via the superradiance instability. Through processes such as annihilation, these bosons can source continuous gravitational wave signals with frequencies within the range of LIGO
Compact binary coalescence (CBC) is one of the most promising sources of gravitational waves. These sources are usually searched for with matched filters which require accurate calculation of the GW waveforms and generation of large template banks. W
We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100--450 solar masses and with the component mass ratios between 1:1 and 4:1. Th
Dirac cloud is in absence in general relativity since the superradiance mechanism fails to work for Dirac fields. For the first time we find a mechanism to support Dirac clouds in modified gravity. We study quasi bound states of Dirac particles aroun
We use numerical relativity to study the merger and ringdown stages of superkick binary black hole systems (those with equal mass and anti-parallel spins). We find a universal way to describe the mass and current quadrupole gravitational waves emitte