ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal features of gravitational waves emitted by superkick binary black hole systems

98   0   0.0 ( 0 )
 نشر من قبل Sizheng Ma
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use numerical relativity to study the merger and ringdown stages of superkick binary black hole systems (those with equal mass and anti-parallel spins). We find a universal way to describe the mass and current quadrupole gravitational waves emitted by these systems during the merger and ringdown stage: (i) The time evolutions of these waves are insensitive to the progenitors parameters (spins) after being normalized by their own peak values. (ii) The peak values, which encode all the spin information of the progenitor, can be consistently fitted to formulas inspired by post-Newtonian theory. We find that the universal evolution of the mass quadrupole wave can be accurately modeled by the so-called Backwards One-Body (BOB) model. However, the BOB model, in its present form, leads to a lower waveform match and a significant parameter-estimation bias for the current quadrupole wave. We also decompose the ringdown signal into seven overtones, and study the dependence of mode amplitudes on the progenitors parameters. Such dependence is found to be insensitive to the overtone index (up to a scaling factor). Finally, we use the Fisher matrix technique to investigate how the ringdown waveform can be at least as important for parameter estimation as the inspiral stage. Assuming the Cosmic Explorer, we find the contribution of ringdown portion dominates as the total mass exceeds ~ 250 solar mass. For massive BBH systems, the accuracy of parameter measurement is improved by incorporating the information of ringdown -- the ringdown sector gives rise to a different parameter correlation from inspiral stage, hence the overall parameter correlation is reduced in the full signal.



قيم البحث

اقرأ أيضاً

We apply machine learning methods to build a time-domain model for gravitational waveforms from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by representing the waveforms amplitude and phase using a principal c omponent analysis. We train mlgw on about $mathcal{O}(10^3)$ TEOBResumS and SEOBNRv4 effective-one-body waveforms with mass ratios $qin[1,20]$ and aligned dimensionless spins $sin[-0.80,0.95]$. The resulting models are faithful to the training sets at the ${sim}10^{-3}$ level (averaged on the parameter space). The speed up for a single waveform generation is a factor 10 to 50 (depending on the binary mass and initial frequency) for TEOBResumS and approximately an order of magnitude more for SEOBNRv4. Furthermore, mlgw provides a closed form expression for the waveform and its gradient with respect to the orbital parameters; such an information might be useful for future improvements in GW data analysis. As demonstration of the capabilities of mlgw to perform a full parameter estimation, we re-analyze the public data from the first GW transient catalog (GWTC-1). We find broadly consistent results with previous analyses at a fraction of the cost, although the analysis with spin aligned waveforms gives systematic larger values of the effective spins with respect to previous analyses with precessing waveforms. Since the generation time does not depend on the length of the signal, our model is particularly suitable for the analysis of the long signals that are expected to be detected by third-generation detectors. Future applications include the analysis of waveform systematics and model selection in parameter estimation.
We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LI GO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.
On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $les ssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.
We show how gravitational-wave observations of binary black hole (BBH) mergers can constrain the physical characteristics of a scalar field cloud parameterized by mass $tilde{mu}$ and strength $phi_0$ that may surround them. We numerically study the inspiraling equal-mass, non-spinning BBH systems dressed in such clouds, focusing especially on the gravitational-wave signals emitted by their merger-ringdown phase. These waveforms clearly reveal that larger values of $tilde{mu}$ or $phi_0$ cause bigger changes in the amplitude and frequency of the scalar-field-BBH ringdown signals. We show that the numerical waveforms of scalar-field-BBHs can be modelled as chirping sine-Gaussians, with matches in excess of 95%. This observation enables one to employ computationally expensive Bayesian studies for estimating the parameters of such binaries. Using our chirping sine-Gaussian signal model we establish that observations of BBH mergers at a distance of 450 Mpc will allow to distinguish BBHs without any scalar field from those with a field strength $phi_0 gtrsim 5.5times 10^{-3}$, at any fixed value of $tilde mu in [0.3,0.8]$, with 90% confidence or better, in single detectors with Advanced LIGO/Virgo type sensitivities. This provides hope for the possibility of determining or constraining the mass of ultra-light bosons with gravitational-wave observations of BBH mergers.
We introduce a gravitational waveform inversion strategy that discovers mechanical models of binary black hole (BBH) systems. We show that only a single time series of (possibly noisy) waveform data is necessary to construct the equations of motion f or a BBH system. Starting with a class of universal differential equations parameterized by feed-forward neural networks, our strategy involves the construction of a space of plausible mechanical models and a physics-informed constrained optimization within that space to minimize the waveform error. We apply our method to various BBH systems including extreme and comparable mass ratio systems in eccentric and non-eccentric orbits. We show the resulting differential equations apply to time durations longer than the training interval, and relativistic effects, such as perihelion precession, radiation reaction, and orbital plunge, are automatically accounted for. The methods outlined here provide a new, data-driven approach to studying the dynamics of binary black hole systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا