ﻻ يوجد ملخص باللغة العربية
In this article, we consider the problem of recovering the underlying trajectory when the longitudinal data are sparsely and irregularly observed and noise-contaminated. Such data are popularly analyzed with functional principal component analysis via the Principal Analysis by Conditional Estimation (PACE) method. The PACE method may sometimes be numerically unstable because it involves the inverse of the covariance matrix. We propose a sparse orthonormal approximation (SOAP) method as an alternative. It estimates the optimal empirical basis functions in the best approximation framework rather than eigen-decomposing the covariance function. The SOAP method avoids estimating the mean and covariance function, which is challenging when the assembled time points with observations for all subjects are not sufficiently dense. The SOAP method avoids the inverse of the covariance matrix, hence the computation is more stable. It does not require the functional principal component scores to follow the Gaussian distribution. We show that the SOAP estimate for the optimal empirical basis function is asymptotically consistent. The finite sample performance of the SOAP method is investigated in simulation studies in comparison with the PACE method. Our method is demonstrated by recovering the CD4 percentage curves from sparse and irregular data in the Multi-center AIDS Cohort Study.
Binary regression models are commonly used in disciplines such as epidemiology and ecology to determine how spatial covariates influence individuals. In many studies, binary data are shared in a spatially aggregated form to protect privacy. For examp
In this paper, we propose a two-stage method called Spline Assisted Partial Differential Equation involved Model Identification (SAPDEMI) to efficiently identify the underlying partial differential equation (PDE) models from the noisy data. In the fi
We propose a novel technique to assess functional brain connectivity in EEG/MEG signals. Our method, called Sparsely-Connected Sources Analysis (SCSA), can overcome the problem of volume conduction by modeling neural data innovatively with the follow
Observational longitudinal data on treatments and covariates are increasingly used to investigate treatment effects, but are often subject to time-dependent confounding. Marginal structural models (MSMs), estimated using inverse probability of treatm
Penalized variable selection for high dimensional longitudinal data has received much attention as accounting for the correlation among repeated measurements and providing additional and essential information for improved identification and predictio