ﻻ يوجد ملخص باللغة العربية
We propose a novel technique to assess functional brain connectivity in EEG/MEG signals. Our method, called Sparsely-Connected Sources Analysis (SCSA), can overcome the problem of volume conduction by modeling neural data innovatively with the following ingredients: (a) the EEG is assumed to be a linear mixture of correlated sources following a multivariate autoregressive (MVAR) model, (b) the demixing is estimated jointly with the source MVAR parameters, (c) overfitting is avoided by using the Group Lasso penalty. This approach allows to extract the appropriate level cross-talk between the extracted sources and in this manner we obtain a sparse data-driven model of functional connectivity. We demonstrate the usefulness of SCSA with simulated data, and compare to a number of existing algorithms with excellent results.
We present a novel solution to the problem of localization of MEG and EEG brain signals. The solution is sequential and iterative, and is based on minimizing the least-squares (LS)criterion by the Alternating Projection (AP) algorithm, which is well
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious
In the genomic era, the identification of gene signatures associated with disease is of significant interest. Such signatures are often used to predict clinical outcomes in new patients and aid clinical decision-making. However, recent studies have s
Multiple-subject network data are fast emerging in recent years, where a separate connectivity matrix is measured over a common set of nodes for each individual subject, along with subject covariates information. In this article, we propose a new gen
There have been many attempts to identify high-dimensional network features via multivariate approaches. Specifically, when the number of voxels or nodes, denoted as p, are substantially larger than the number of images, denoted as n, it produces an