ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk-boundary-defect correspondence at disclinations in rotation-symmetric topological insulators and superconductors

115   0   0.0 ( 0 )
 نشر من قبل Max Geier
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a link between the ground-state topology and the topology of the lattice via the presence of anomalous states at disclinations -- topological lattice defects that violate a rotation symmetry only locally. We first show the existence of anomalous disclination states, such as Majorana zero-modes or helical electronic states, in second-order topological phases by means of Volterra processes. Using the framework of topological crystals to construct $d$-dimensional crystalline topological phases with rotation and translation symmetry, we then identify all contributions to $(d-2)$-dimensional anomalous disclination states from weak and first-order topological phases. We perform this procedure for all Cartan symmetry classes of topological insulators and superconductors in two and three dimensions and determine whether the correspondence between bulk topology, boundary signatures, and disclination anomaly is unique.



قيم البحث

اقرأ أيضاً

Lattices with a basis can host crystallographic defects which share the same topological charge (e.g.~the Burgers vector $vec b$ of a dislocation) but differ in their microscopic structure of the core. We demonstrate that in insulators with particle- hole symmetry and an odd number of orbitals per site, the microscopic details drastically affect the electronic structure: modifications can create or annihilate non-trivial bound states with an associated fractional charge. We show that this observation is related to the behavior of end modes of a dimerized chain and discuss how the end or defect states are predicted from topological invariants in these more complicated cases. Furthermore, using explicit examples on the honeycomb lattice, we explain how bound states in vacancies, dislocations and disclinations are related to each other and to edge modes and how similar features arise in nodal semimetals such as graphene.
The bulk-boundary correspondence is a generic feature of topological states of matter, reflecting the intrinsic relation between topological bulk and boundary states. For example, robust edge states propagate along the edges and corner states gather at corners in the two-dimensional first-order and second-order topological insulators, respectively. Here, we report two kinds of topological states hosting anomalous bulk-boundary correspondence in the extended two-dimensional dimerized lattice with staggered flux threading. At 1/2-filling, we observe isolated corner states with no fractional charge as well as metallic near-edge states in the C = 2 Chern insulator states. At 1/4-filling, we find a C = 0 topologically nontrivial state, where the robust edge states are well localized along edges but bypass corners. These robust topological insulating states significantly differ from both conventional Chern insulators and usual high-order topological insulators.
Two-dimensional second-order topological superconductors host zero-dimensional Majorana bound states at their boundaries. In this work, focusing on rotation-invariant crystalline topological superconductors, we establish a bulk-boundary correspondenc e linking the presence of such Majorana bound states to bulk topological invariants introduced by Benalcazar et al. We thus establish when a topological crystalline superconductor protected by rotational symmetry displays second-order topological superconductivity. Our approach is based on stacked Dirac Hamiltonians, using which we relate transitions between topological phases to the transformation properties between adjacent gapped boundaries. We find that in addition to the bulk rotational invariants, the presence of Majorana boundary bound states in a given geometry depends on the interplay between weak topological invariants and the location of the rotation center relative to the lattice. We provide numerical examples for our predictions and discuss possible extensions of our approach.
In this work, we study the disorder effects on the bulk-boundary correspondence of two-dimensional higher-order topological insulators (HOTIs). We concentrate on two cases: (i) bulk-corner correspondence, (ii) edge-corner correspondence. For the bulk -corner correspondence case, we demonstrate the existence of the mobility gaps and clarify the related topological invariant that characterizes the mobility gap. Furthermore, we find that, while the system preserves the bulk-corner correspondence in the presence of disorder, the corner states are protected by the mobility gap instead of the bulk gap. For the edge-corner correspondence case, we show that the bulk mobility gap and edge band gaps of HOTIs are no longer closed simultaneously. Therefore, a rich phase diagram is obtained, including various disorder-induced phase transition processes. Notably, a disorder-induced transition from the non-trivial to trivial phase is realized, distinguishing the HOTIs from the other topological states. Our results deepen the understanding of bulk-boundary correspondence and enrich the topological phase transitions of disordered HOTIs.
Second-order topological insulators are crystalline insulators with a gapped bulk and gapped crystalline boundaries, but topologically protected gapless states at the intersection of two boundaries. Without further spatial symmetries, five of the ten Altland-Zirnbauer symmetry classes allow for the existence of such second-order topological insulators in two and three dimensions. We show that reflection symmetry can be employed to systematically generate examples of second-order topological insulators and superconductors, although the topologically protected states at corners (in two dimensions) or at crystal edges (in three dimensions) continue to exist if reflection symmetry is broken. A three-dimensional second-order topological insulator with broken time-reversal symmetry shows a Hall conductance quantized in units of $e^2/h$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا