ﻻ يوجد ملخص باللغة العربية
In this paper we obtain a decoupling feature of the random interlacements process $mathcal{I}^u subset mathbb{Z}^d$, at level $u$, $dgeq 3$. More precisely, we show that the trace of the random interlacements process on two disjoint finite sets, $textsf{F}$ and its translated $textsf{F}+x$, can be coupled with high probability of success, when $|x|$ is large, with the trace of a process of independent excursions, which we call the noodle soup process. As a consequence, we obtain an upper bound on the covariance between two $[0,1]$-valued functions depending on the configuration of the random interlacements on $textsf{F}$ and $textsf{F}+x$, respectively. This improves a previous bound obtained by Sznitman in [12].
We consider the model of random interlacements on transient graphs, which was first introduced by Sznitman [Ann. of Math. (2) (2010) 171 2039-2087] for the special case of ${mathbb{Z}}^d$ (with $dgeq3$). In Sznitman [Ann. of Math. (2) (2010) 171 2039
We introduce the model of two-dimensional continuous random interlacements, which is constructed using the Brownian trajectories conditioned on not hitting a fixed set (usually, a disk). This model yields the local picture of Wiener sausage on the to
For $dge 3$ we construct a new coupling of the trace left by a random walk on a large $d$-dimensional discrete torus with the random interlacements on $mathbb Z^d$. This coupling has the advantage of working up to macroscopic subsets of the torus. As
For a large class of amenable transient weighted graphs $G$, we prove that the sign clusters of the Gaussian free field on $G$ fall into a regime of strong supercriticality, in which two infinite sign clusters dominate (one for each sign), and finite
We consider the random interlacements process with intensity $u$ on ${mathbb Z}^d$, $dge 5$ (call it $I^u$), built from a Poisson point process on the space of doubly infinite nearest neighbor trajectories on ${mathbb Z}^d$. For $kge 3$ we want to de