ﻻ يوجد ملخص باللغة العربية
The circumgalactic medium (CGM) of nearby star-forming galaxies show clear indications of ion{O}{6} absorption accompanied by little to no ion{N}{5} absorption. This unusual spectral signature, accompanied by absorption from lower ionization state species whose columns vary by orders of magnitude along st{difference} textbf{different} sightlines, indicates that the CGM must be viewed as a dynamic, multiphase medium, such as occurs in the presence of turbulence. To explore this possibility, we carry out a series of chemodynamical simulations of a isotropic turbulent media, using the MAIHEM package. The simulations assume a metallicity of $0.3 Z_{odot}$ and a redshift zero metagalatic UV background, and they track ionizations, recombinations, and species-by-species radiative cooling for a wide range of elements. We find that turbulence with a one-dimensional velocity dispersion of $sigma_{1D} approx 60$ km/s replicates many of the observed features within the CGM, such as clumping of low ionization-state ions and the existence of ion{O}{6} at moderate ionization parameters. However, unlike observations, ion{N}{5} often arises in our simulations with derived column densities of a similar magnitude to those of ion{O}{6}. While higher values of $sigma_{1D}$ lead to a thermal runaway in our isotropic simulations, this would not be the case in stratified media, and thus we speculate that more complex models of the turbulence may well match the absence of ion{N}{5} in the CGM of star-forming galaxies.
The circumgalactic medium (CGM) of nearby star-forming galaxies shows clear indications of OVI absorption accompanied by little to no detectable NV absorption. This unusual spectral signature, accompanied by highly non-uniform absorption from lower i
Single-phase photoionization equilibrium (PIE) models are often used to infer the underlying physical properties of galaxy halos probed in absorption with ions at different ionization potentials. To incorporate the effects of turbulence, we use the M
Galaxies are surrounded by extended atmospheres, which are often called the circumgalactic medium (CGM) and are the least understood part of galactic ecosystems. The CGM serves as a reservoir of both diffuse, metal-poor gas accreted from the intergal
The cycling of baryons in and out of galaxies is what ultimately drives galaxy formation and evolution. The circumgalactic medium (CGM) represents the interface between the interstellar medium and the cosmic web, hence its properties are directly sha
This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in