ترغب بنشر مسار تعليمي؟ اضغط هنا

A classification of global conformal invariants

102   0   0.0 ( 0 )
 نشر من قبل Jordan Fran\\c{c}ois
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide the full classification, in arbitrary even and odd dimensions, of global conformal invariants, i.e., scalar densities in the spacetime metric and its derivatives that are invariant, possibly up to a total derivative, under local Weyl rescalings of the metric. We use cohomological techniques that have already proved instrumental in the classification of Weyl anomalies in arbitrary dimensions. The approach we follow is purely algebraic and borrows techniques originating from perturbative Quantum Field Theory for which locality is crucial.



قيم البحث

اقرأ أيضاً

BMS symmetries have been attracting a great deal of interest in recent years. Originally discovered as being the symmetries of asymptotically flat spacetime geometries at null infinity in General Relativity, BMS symmetries have also been shown to exi st for free field theories over Minkowski spacetime. In wanting to better understand their status and the underlying reasons for their existence, this work proposes a general rationale towards identifying all possible global symmetries of a free field theory over Minkowski spacetime, by allowing the corresponding conserved generators not to be necessarily spatially local in phase space since fields and their conjugate momenta are intrinsically spatially non local physical entities. As a preliminary towards a separate study of the role of asymptotic states for BMS symmetries in an unbounded Minkowski spacetime, the present discussion focuses first onto a 2+1 dimensional free scalar field theory in a bounded spatial domain with the topology of a disk and an arbitrary radial Robin boundary condition. The complete set of global symmetries of that system, most of which are dynamical symmetries but include as well those generated by the local total energy and angular-momentum of the field, is thereby identified.
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions, focussing on free fermion models and Wess-Zumino-Witten models. To this end, we utilize a recently introduced operator-algeb raic framework for Wilson-Kadanoff renormalization. In this setting, we prove the convergence of the approximation of the Virasoro generators by the Koo-Saleur formula. From this, we deduce the convergence of lattice approximations of conformal correlation functions to their continuum limit. In addition, we show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
In generic conformal field theories with $W_3$ symmetry, we identify a primary field $sigma$ with rational Kac indices, which produces the full $mathbb{Z}_3$ charged and neutral sectors by the fusion processes $sigma times sigma$ and $sigma times sig ma^*$, respectively. In this sense, this field generalises the $mathbb{Z}_3$ fundamental spin field of the three-state Potts model. Among the degenerate fields produced by these fusions, we single out a `parafermion field $psi$ and an `energy field $varepsilon$. In analogy with the Virasoro case, the exact curves for conformal dimensions $(h_sigma,h_psi)$ and $(h_sigma,h_varepsilon)$ are expected to give close estimates for the unitarity bounds in the conformal bootstrap analysis.
Nonrelativistic conformal groups, indexed by l=N/2, are analyzed. Under the assumption that the mass parametrizing the central extension is nonvanishing the coadjoint orbits are classified and described in terms of convenient variables. It is shown t hat the corresponding dynamical system describes, within Ostrogradski framework, the nonrelativistic particle obeying (N+1)-th order equation of motion. As a special case, the Schroedinger group and the standard Newton equations are obtained for N=1 (l=1/2).
The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions $4l+3$, whose parameter $k$ is quantized. The generalized Wilson $(2l+1)$-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of $(2l+1)$-loops, first on closed $(4l+3)$-manifolds through a novel geometric computation, then on $mathbb{R}^{4l+3}$ through an unconventional field theoretic computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا