ﻻ يوجد ملخص باللغة العربية
In generic conformal field theories with $W_3$ symmetry, we identify a primary field $sigma$ with rational Kac indices, which produces the full $mathbb{Z}_3$ charged and neutral sectors by the fusion processes $sigma times sigma$ and $sigma times sigma^*$, respectively. In this sense, this field generalises the $mathbb{Z}_3$ fundamental spin field of the three-state Potts model. Among the degenerate fields produced by these fusions, we single out a `parafermion field $psi$ and an `energy field $varepsilon$. In analogy with the Virasoro case, the exact curves for conformal dimensions $(h_sigma,h_psi)$ and $(h_sigma,h_varepsilon)$ are expected to give close estimates for the unitarity bounds in the conformal bootstrap analysis.
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions, focussing on free fermion models and Wess-Zumino-Witten models. To this end, we utilize a recently introduced operator-algeb
Higgs fields on gauge-natural prolongations of principal bundles are defined by invariant variational problems and related canonical conservation laws along the kernel of a gauge-natural Jacobi morphism.
We investigate a new property of nets of local algebras over 4-dimensional globally hyperbolic spacetimes, called punctured Haag duality. This property consists in the usual Haag duality for the restriction of the net to the causal complement of a po
In the Lagrangian approach to 2-dimensional sigma models, B-fields and D-branes contribute topological terms to the action of worldsheets of both open and closed strings. We show that these terms naturally fit into a 2-dimensional, smooth open-closed
$CPT$ groups of higher spin fields are defined in the framework of automorphism groups of Clifford algebras associated with the complex representations of the proper orthochronous Lorentz group. Higher spin fields are understood as the fields on the