ﻻ يوجد ملخص باللغة العربية
The Fano resonance is a widespread wave scattering phenomenon associated with a peculiar asymmetric and ultra-sharp line shape, which has found applications in a large variety of prominent optical devices. While its substantial sensitivity to geometrical and environmental changes makes it the cornerstone of efficient sensors, it also renders the practical realization of Fano-based systems extremely challenging. Here, we introduce the concept of topological Fano resonance, whose ultra-sharp asymmetric line shape is guaranteed by design and protected against geometrical imperfections, yet remaining sensitive to external parameters. We report the experimental observation of such resonances in an acoustic system, and demonstrate their inherent robustness to geometrical disorder. Such topologically-protected Fano resonances, which can also be found in microwave, optical and plasmonic systems, open up exciting frontiers for the generation of various reliable wave-based devices including low-threshold lasers, perfect absorbers, ultrafast switches or modulators, and highly accurate interferometers, by circumventing the performance degradations caused by inadvertent fabrication flaws.
When intense light irradiates a quantum system, an ionizing electron recollides with its parent ion within the same light cycle and, during that very brief (few femtosecond) encounter, its kinetic energy sweeps from low to high energy and back. There
Photonic cavities are valued in current research owing to the multitude of linear and nonlinear effects arising from densely confined light. Cavity designs consisting of low loss dielectric materials can achieve significant light confinement, competi
Decay of bound states due to coupling with free particle states is a general phenomenon occurring at energy scales from MeV in nuclear physics to peV in ultracold atomic gases. Such a coupling gives rise to Fano-Feshbach resonances (FFR) that have be
Doubly-excited Rydberg states of helium (He) nanodroplets have been studied using synchrotron radiation. We observed Fano resonances related to the atomic N = 2,0 series as a function of droplet size. Although similar qualitatively to their atomic co
It is well established that nearly all high-quality (Q) Fano-like resonances in terahertz (THz) metasurfaces broaden as asymmetry increases, resulting in a decline of Q-factor and an increase in the resonance intensity. Therefore, in order to determi