ﻻ يوجد ملخص باللغة العربية
Context. The Gaia ESA mission will estimate the astrometric and physical data of more than one billion objects, providing the largest and most precise catalog of absolute astrometry in the history of Astronomy. The core of this process, the so-called global sphere reconstruction, is represented by the reduction of a subset of these objects which will be used to define the celestial reference frame. As the Hipparcos mission showed, and as is inherent to all kinds of absolute measurements, possible errors in the data reduction can hardly be identified from the catalog, thus potentially introducing systematic errors in all derived work. Aims. Following up on the lessons learned from Hipparcos, our aim is thus to develop an independent sphere reconstruction method that contributes to guarantee the quality of the astrometric results without fully reproducing the main processing chain. Methods. Indeed, given the unfeasibility of a complete replica of the data reduction pipeline, an astrometric verification unit (AVU) was instituted by the Gaia Data Processing and Analysis Consortium (DPAC). One of its jobs is to implement and operate an independent global sphere reconstruction (GSR), parallel to the baseline one (AGIS, namely Astrometric Global Iterative Solution) but limited to the primary stars and for validation purposes, to compare the two results, and to report on any significant differences. Results. Tests performed on simulated data show that GSR is able to reproduce at the sub-$mu$as level the results of the AGIS demonstration run presented in Lindegren et al. (2012). Conclusions. Further development is ongoing to improve on the treatment of real data and on the software modules that compare the AGIS and GSR solutions to identify possible discrepancies above the tolerance level set by the accuracy of the Gaia catalog.
The Gaia satellite will observe about one billion stars and other point-like sources. The astrometric core solution will determine the astrometric parameters (position, parallax, and proper motion) for a subset of these sources, using a global soluti
The ESA space astrometry mission Gaia, planned to be launched in 2013, has been designed to make angular measurements on a global scale with micro-arcsecond accuracy. A key component of the data processing for Gaia is the astrometric core solution, w
Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the i
Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. We de
We describe development and application of a Global Astrometric Solution (GAS) to the problem of Pan-STARRS1 (PS1) astrometry. Current PS1 astrometry is based on differential astrometric measurements using 2MASS reference stars, thus PS1 astrometry i