ﻻ يوجد ملخص باللغة العربية
The ESA space astrometry mission Gaia, planned to be launched in 2013, has been designed to make angular measurements on a global scale with micro-arcsecond accuracy. A key component of the data processing for Gaia is the astrometric core solution, which must implement an efficient and accurate numerical algorithm to solve the resulting, extremely large least-squares problem. The Astrometric Global Iterative Solution (AGIS) is a framework that allows to implement a range of different iterative solution schemes suitable for a scanning astrometric satellite. In order to find a computationally efficient and numerically accurate iteration scheme for the astrometric solution, compatible with the AGIS framework, we study an adaptation of the classical conjugate gradient (CG) algorithm, and compare it to the so-called simple iteration (SI) scheme that was previously known to converge for this problem, although very slowly. The different schemes are implemented within a software test bed for AGIS known as AGISLab, which allows to define, simulate and study scaled astrometric core solutions. After successful testing in AGISLab, the CG scheme has been implemented also in AGIS. The two algorithms CG and SI eventually converge to identical solutions, to within the numerical noise (of the order of 0.00001 micro-arcsec). These solutions are independent of the starting values (initial star catalogue), and we conclude that they are equivalent to a rigorous least-squares estimation of the astrometric parameters. The CG scheme converges up to a factor four faster than SI in the tested cases, and in particular spatially correlated truncation errors are much more efficiently damped out with the CG scheme.
The Gaia satellite will observe about one billion stars and other point-like sources. The astrometric core solution will determine the astrometric parameters (position, parallax, and proper motion) for a subset of these sources, using a global soluti
Context. The Gaia ESA mission will estimate the astrometric and physical data of more than one billion objects, providing the largest and most precise catalog of absolute astrometry in the history of Astronomy. The core of this process, the so-called
Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the i
Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. We de
I present a software tool for solving the astrometry of astronomical images. The code puts emphasis on robustness against failures for correctly matching the sources in the image to a reference catalog, and on the stability of the solutions over the