ﻻ يوجد ملخص باللغة العربية
We demonstrate stimulated Raman gain using a broadband LED Stokes source to measure vibrational spectra of aqueous glucose solutions. This versatile and cost-effective method increases Raman signal for a variety of applications. We measured both stimulated Raman and spontaneous Raman spectra of glucose solutions with concentrations up to 10 mM with a photon counter and lock-in amplifier. We built partial least squares regression models based on both stimulated Raman and spontaneous Raman spectral data measured with each instrument for predicting concentrations of the glucose solutions. The stimulated Raman spectra measured with the lock-in amplifier based model had the strongest predictive power and predicted the concentrations of the test set of glucose solutions with a mean squared error value an order of magnitude lower than those of the spontaneous Raman based model.
In Impulsive Stimulated Raman Scattering vibrational oscillations, coherently stimulated by a femtosecond Raman pulse, are real time monitored and read out as intensity modulations in the transmission of a temporally delayed probe pulse. Critically,
We demonstrate a compact and versatile laser system for stimulated Raman spectroscopy (SRS). The system is based on a tunable continuous wave (CW) probe laser combined with a home-built semi-monolithic nanosecond pulsed pump Nd:YVO4 laser at 1064 nm.
Nonstationary molecular states which contain electronic coherences can be impulsively created and manipulated by using recently-developed ultrashort optical and X-ray pulses via photoexcitation, photoionization and Auger processes. We propose several
Squeezed light are optical beams with variance below the Shot Noise Level. They are a key resource for quantum technologies based on photons, they can be used to achieve better precision measurements, improve security in quantum key distribution chan
Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light emitting diodes and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescenc