ﻻ يوجد ملخص باللغة العربية
Define the augmented square twist origami crease pattern to be the classic square twist crease pattern with one crease added along a diagonal of the twisted square. In this paper we fully describe the rigid foldability of this new crease pattern. Specifically, the extra crease allows the square twist to rigidly fold in ways the original cannot. We prove that there are exactly four non-degenerate rigid foldings of this crease pattern from the unfolded state.
In this paper, we show that deciding rigid foldability of a given crease pattern using all creases is weakly NP-hard by a reduction from Partition, and that deciding rigid foldability with optional creases is strongly NP-hard by a reduction from 1-in
A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in thr
We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the un
Toeplitz conjectured that any simple planar loop inscribes a square. Here we prove variants of Toeplitz square peg problem. We prove Hadwigers 1971 conjecture that any simple loop in $3$-space inscribes a parallelogram. We show that any simple planar
Using a mathematical model for self-foldability of rigid origami, we determine which monohedral quadrilateral tilings of the plane are uniquely self-foldable. In particular, the Miura-ori and Chicken Wire patterns are not self-foldable under our defi