ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene-based light sensing: fabrication, characterisation, physical properties and performance

89   0   0.0 ( 0 )
 نشر من قبل Adolfo De Sanctis
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene and graphene-based materials exhibit exceptional optical and electrical properties with great promise for novel applications in light detection. However, several challenges prevent the full exploitation of these properties in commercial devices. Such challenges include the limited linear dynamic range (LDR) of graphene-based photodetectors, the lack of efficient generation and extraction of photoexcited charges, the smearing of photoactive junctions due to hot-carriers effects, large-scale fabrication and ultimately the environmental stability of the constituent materials. In order to overcome the aforementioned limits, different approaches to tune the properties of graphene have been explored. A new class of graphene-based devices has emerged where chemical functionalisation, hybridisation with light-sensitising materials and the formation of heterostructures with other 2D materials have led to improved performance, stability or versatility. For example, intercalation of graphene with FeCl$_3$ is highly stable in ambient conditions and can be used to define photo-active junctions characterized by an unprecedented LDR while graphene oxide (GO) is a very scalable and versatile material which supports the photodetection from UV to THz frequencies. Nanoparticles and quantum dots have been used to enhance the absorption of pristine graphene and to enable high gain thanks to the photogating effect. In the same way, hybrid detectors made from stacked sequences of graphene and layered transition-metal dichalcogenides enabled a class of detectors with high gain and responsivity. In this work we will review the performance and advances in functionalised graphene and hybrid photodetectors, with particular focus on the physical mechanisms governing the photoresponse in these materials, their performance and possible future paths of investigation.



قيم البحث

اقرأ أيضاً

This paper addresses the structural characterisation of a series of U/Fe, U/Co and U/Gd multilayers. X-ray reflectivity has been employed to investigate the layer thickness and roughness parameters along the growth direction and high-angle diffractio n measurements have been used to determine the crystal structure and orientation of the layers. For the case of uranium/transition metal systems, the interfaces are diffuse and the transition metals are present in a polycrystalline form of their common bulk phases with a preferred orientation along the closest packed planes; Fe, bcc (110) and Co, hcp (001), respectively. The uranium is present in a poorly crystalline orthorhombic, alpha-U state. In contrast, the U/Gd multilayers have sharp interfaces with negligible intermixing of atomic species, and have a roughness, which is strongly dependent on the gadolinium layer thickness. Diffraction spectra indicate a high degree of crystallinity in both U and Gd layers with intensities consistent with the growth of a novel hcp U phase, stabilised by the hcp gadolinium layers.
In this paper, the implementation of optical elements in the form of Pancharatnam-Berry optics is considered. With respect to 3D bulk and diffractive optics, acting on the dynamic phase of light, Pancharatnam-Berry optical elements transfer a phase w hich is geometric in nature by locally manipulating the polarization state of the incident beam. They can be realized as space-variant sub-wavelengths gratings that behave like inhomogeneous form-birefringent materials. We present a comprehensive work of simulation, realization, and optical characterization at the telecom wavelength of 1310 nm of the constitutive linear grating cell, whose fabrication has been finely tuned in order to get a {pi}-phase delay and obtain a maximum in the diffraction efficiency. The optical design in the infrared region allows the use of silicon as candidate material due to its transparency. In order to demonstrate the possibility to assemble the single grating cells for generating more complex phase patterns, the implementation of two Pancharatnam-Berry optical elements is considered: a blazed grating and an optical vortices demultiplexer.
Antiferromagnets (AFMs) with zero net magnetization are proposed as active elements in future spintronic devices. Depending on the critical thickness of the AFM thin films and the measurement temperature, bimetallic Mn-based alloys and transition met al oxide-based AFMs can host various coexisting ordered, disordered, and frustrated AFM phases. Such coexisting phases in the exchange coupled ferromagnetic (FM)/AFM-based heterostructures can result in unusual magnetic and magnetotransport phenomena. Here, we integrate chemically disordered AFM IrMn3 thin films with coexisting AFM phases into complex exchange coupled MgO(001)/Ni3Fe/IrMn3/Ni3Fe/CoO heterostructures and study the structural, magnetic, and magnetotransport properties in various magnetic field cooling states. In particular, we unveil the impact of rotating the relative orientation of the disordered and reversible AFM moments with respect to the irreversible AFM moments on the magnetic and magnetoresistance properties of the exchange coupled heterostructures. We further found that the persistence of AFM grains with thermally disordered and reversible AFM order is crucial for achieving highly tunable magnetic properties and multi-level magnetoresistance states. We anticipate that the introduced approach and the heterostructure architecture can be utilized in future spintronic devices to manipulate the thermally disordered and reversible AFM order at the nanoscale.
In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (< 1$mu$m) platforms, are highly relevant for nanoscale sensing . The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices.
Carbon nitride-based nanostructures have attracted special attention (from theory and experiments) due to their remarkable electromechanical properties. In this work we have investigated the mechanical properties of some graphene-like carbon nitride membranes through fully atomistic reactive molecular dynamics simulations. We have analyzed three different structures of these CN families, the so-called graphene-based g-CN, triazine-based g-C3N4 and heptazine-based g-C3N4. The stretching dynamics of these membranes was studied for deformations along their two main axes and at three different temperatures: 10K, 300K and 600K. We show that g-CN membranes have the lowest ultimate fracture strain value, followed by heptazine-based and triazine-based ones, respectively. This behavior can be explained in terms of their differences in terms of density values, topologies and types of chemical bonds. The dependency of the fracture patterns on the stretching directions is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا