ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Entropy Production and Fluctuation Theorems for Active Matter

66   0   0.0 ( 0 )
 نشر من قبل Andrea Puglisi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a comment to a letter by D. Mandal, K. Klymko and M. R. DeWeese published as Phys. Rev. Lett. 119, 258001 (2017).



قيم البحث

اقرأ أيضاً

Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framew ork of stochastic thermodynamics to active matter. In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent definitions of thermodynamic quantities such as work, energy, heat, entropy, and entropy production at the level of single, stochastic trajectories and derived related fluctuation relations. We have developed a generalization of the Clausius inequality, which is valid even in the presence of the non-Hamiltonian dynamics underlying active matter systems. We have illustrated our results with explicit numerical studies.
79 - Yunxin Zhang 2019
In recent letter [Phys.~Rev.~Lett {bf 123}, 110602 (2019)], Y.~Hasegawa and T.~V.~Vu derived a thermodynamic uncertainty relation. But the bound of their relation is loose. In this comment, through minor changes, an improved bound is obtained. This i mproved bound is the same as the one obtained in [Phys.~Rev.~Lett {bf 123}, 090604 (2019)] by A.~M.~Timpanaro {it et. al.}, but the derivation here is straightforward.
We present a comprehensive study about the relationship between the way Detailed Balance is broken in non-equilibrium systems and the resulting violations of the Fluctuation-Dissipation Theorem. Starting from stochastic dynamics with both odd and eve n variables under Time-Reversal, we exploit the relation between entropy production and the breakdown of Detailed Balance to establish general constraints on the non-equilibrium steady-states (NESS), which relate the non-equilibrium character of the dynamics with symmetry properties of the NESS distribution. This provides a direct route to derive extended Fluctuation-Dissipation Relations, expressing the linear response function in terms of NESS correlations. Such framework provides a unified way to understand the departure from equilibrium of active systems and its linear response. We then consider two paradigmatic models of interacting self-propelled particles, namely Active Brownian Particles (ABP) and Active Ornstein-Uhlenbeck Particles (AOUP). We analyze the non-equilibrium character of these systems (also within a Markov and a Chapman-Enskog approximation) and derive extended Fluctuation-Dissipation Relations for them, clarifying which features of these active model systems are genuinely non-equilibrium.
A stopping time $T$ is the first time when a trajectory of a stochastic process satisfies a specific criterion. In this paper, we use martingale theory to derive the integral fluctuation relation $langle e^{-S_{rm tot}(T)}rangle=1$ for the stochastic entropy production $S_{rm tot}$ in a stationary physical system at stochastic stopping times $T$. This fluctuation relation implies the law $langle S_{rm tot}(T)ranglegeq 0$, which states that it is not possible to reduce entropy on average, even by stopping a stochastic process at a stopping time, and which we call the second law of thermodynamics at stopping times. This law implies bounds on the average amount of heat and work a system can extract from its environment when stopped at a random time. Furthermore, the integral fluctuation relation implies that certain fluctuations of entropy production are universal or are bounded by universal functions. These universal properties descend from the integral fluctuation relation by selecting appropriate stopping times: for example, when $T$ is a first-passage time for entropy production, then we obtain a bound on the statistics of negative records of entropy production. We illustrate these results on simple models of nonequilibrium systems described by Langevin equations and reveal two interesting phenomena. First, we demonstrate that isothermal mesoscopic systems can extract on average heat from their environment when stopped at a cleverly chosen moment and the second law at stopping times provides a bound on the average extracted heat. Second, we demonstrate that the average efficiency at stopping times of an autonomous stochastic heat engines, such as Feymanns ratchet, can be larger than the Carnot efficiency and the second law of thermodynamics at stopping times provides a bound on the average efficiency at stopping times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا