ﻻ يوجد ملخص باللغة العربية
We consider the Cauchy problem associated with the Zakharov-Kuznetsov equation, posed on $mathbb{T}^2$. We prove the local well-posedness for given data in $H^s(mathbb{T}^2)$ whenever $s>5/3$. More importantly, we prove that this equation is of quasi-linear type for initial data in any Sobolev space on the torus, in sharp contrast with its semi-linear character in the $mathbb{R}^2$ and $mathbb{R}times mathbb{T}$ settings.
We solve the group classification problem for the $2+1$ generalized quantum Zakharov-Kuznetsov equation. Particularly we consider the generalized equation $u_{t}+fleft( uright) u_{z}+u_{zzz}+u_{xxz}=0$, and the time-dependent Zakharov-Kuznetsov equat
We consider the cubic Hyperbolic Schrodinger equation eqref{eq:nls} on torus $T^2$. We prove that sharp $L^4$ Strichartz estimate, which implies that eqref{eq:nls} is analytic locally well-posed in in $H^s(T^2)$ with $s>1/2$, meanwhile, the ill-posed
The aim of this paper is to investigate the Cauchy problem for the periodic fifth order KP-I equation [partial_t u - partial_x^5 u -partial_x^{-1}partial_y^2u + upartial_x u = 0,~(t,x,y)inmathbb{R}timesmathbb{T}^2] We prove global well-posedness for
In this paper, we consider a 1D periodic transport equation with nonlocal flux and fractional dissipation $$ u_{t}-(Hu)_{x}u_{x}+kappaLambda^{alpha}u=0,quad (t,x)in R^{+}times S, $$ where $kappageq0$, $0<alphaleq1$ and $S=[-pi,pi]$. We first establis
The periodic Benjamin-Ono equation is an autonomous Hamiltonian system with a Gibbs measure on $L^2({mathbb T})$. The paper shows that the Gibbs measures on bounded balls of $L^2$ satisfy some logarithmic Sobolev inequalities. The space of $n$-solito