ﻻ يوجد ملخص باللغة العربية
Fossil groups (FGs) are galaxy aggregates with an extended and luminous X-ray halo, which are dominated by a very massive early-type galaxy and lack of L* objects. FGs are indeed characterized by a large magnitude gap between their central and surrounding galaxies. This is explained by either speculating that FGs are failed groups that formed without bright satellite galaxies and did not suffer any major merger, or by suggesting that FGs are very old systems that had enough time to exhaust their bright satellite galaxies through multiple major mergers. Since major mergers leave signatures in the stellar populations of the resulting galaxy, we study the stellar population parameters of the brightest central galaxies (BCGs) of FGs as a benchmark against which the formation and evolution scenarios of FGs can be compared. We present long-slit spectroscopic observations along different axes of NGC 6482 and NGC 7556, which are the BCGs of two nearby FGs. The measurements include spatially resolved stellar kinematics and radial profiles of line-strength indices, which we converted into stellar population parameters using single stellar-population models. NGC 6482 and NGC 7556 are very massive and large galaxies and host a centrally concentrated stellar population, which is significantly younger and more metal rich than the rest of the galaxy. The age gradients of both galaxies are somewhat larger than those of the other FG BCGs studied so far, whereas their metallicity gradients are similarly negative and shallow. They have negligible gradients of alpha-element abundance ratio. The measured metallicity gradients are less steep than those predicted for massive galaxies that formed monolithically and evolved without experiencing any major merger. We conclude that the observed FGs formed through major mergers rather than being failed groups that lacked bright satellite galaxies from the beginning.
We want to study how the velocity segregation and the radial profile of the velocity dispersion depend on the prominence of the brightest cluster galaxies (BCGs). We divide a sample of 102 clusters and groups of galaxies into four bins of magnitude g
We aim to study how the orbits of galaxies in clusters depend on the prominence of the corresponding central galaxies. We divided our data set of $sim$ 100 clusters and groups into four samples based on their magnitude gap between the two brightest m
A comparison is carried out among the star formation histories of early-type galaxies (ETG) in fossil groups, clusters and low density environments. Although they show similar evolutionary histories, a significant fraction of the fossils are younger
(Abridged) Fossil systems are group- or cluster-sized objects whose luminosity is dominated by a very massive central galaxy. In the current cold dark matter scenario, these objects formed hierarchically at an early epoch of the Universe and then slo
We compare the mean mass assembly histories of compact and fossil galaxy groups in the Millennium dark matter simulation and an associated semi-analytic galaxy formation model. Tracing the halo mass of compact groups (CGs) from z=0 to z=1 shows that,