ترغب بنشر مسار تعليمي؟ اضغط هنا

Fossil Groups Origins III. Characterization of the sample and observational properties of fossil systems

143   0   0.0 ( 0 )
 نشر من قبل Stefano Zarattini
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) Fossil systems are group- or cluster-sized objects whose luminosity is dominated by a very massive central galaxy. In the current cold dark matter scenario, these objects formed hierarchically at an early epoch of the Universe and then slowly evolved until present day. That is the reason why they are called {it fossils}. We started an extensive observational program to characterize a sample of 34 fossil group candidates spanning a broad range of physical properties. Deep $r-$band images were taken for each candidate and optical spectroscopic observations were obtained for $sim$ 1200 galaxies. This new dataset was completed with SDSS DR7 archival data to obtain robust cluster membership and global properties of each fossil group candidate. For each system, we recomputed the magnitude gaps between the two brightest galaxies ($Delta m_{12}$) and the first and fourth ranked galaxies ($Delta m_{14}$) within 0.5 $R_{{rm 200}}$. We consider fossil systems those with $Delta m_{12} ge 2$ mag or $Delta m_{14} ge 2.5$ mag within the errors. We find that 15 candidates turned out to be fossil systems. Their observational properties agree with those of non-fossil systems. Both follow the same correlations, but fossils are always extreme cases. In particular, they host the brightest central galaxies and the fraction of total galaxy light enclosed in the central galaxy is larger in fossil than in non-fossil systems. Finally, we confirm the existence of genuine fossil clusters. Combining our results with others in the literature, we favor the merging scenario in which fossil systems formed due to mergers of $L^ast$ galaxies. The large magnitude gap is a consequence of the extreme merger ratio within fossil systems and therefore it is an evolutionary effect. Moreover, we suggest that at least one candidate in our sample could represent a transitional fossil stage.



قيم البحث

اقرأ أيضاً

This study is part of the FOssil Groups Origin (FOGO) project which aims at carrying out a systematic and multiwavelength study of a large sample of fossil systems. Here we focus on the relation between the optical luminosity (Lopt) and X-ray luminos ity (Lx). Out of a sample of 28 candidate fossil systems, we consider a sample of 12 systems whose fossil classification has been confirmed by a companion study. They are compared with the complementary sample of 16 systems whose fossil nature is not confirmed and with a subsample of 102 galaxy systems from the RASS-SDSS galaxy cluster survey. Fossil and normal systems span the same redshift range 0<z<0.5 and have the same Lx distribution. For each fossil system, the Lx in the 0.1-2.4 keV band is computed using data from the ROSAT All Sky Survey. For each fossil and normal system we homogeneously compute Lopt in the r-band within the characteristic cluster radius, using data from the SDSS DR7. We sample the Lx-Lopt relation over two orders of magnitude in Lx. Our analysis shows that fossil systems are not statistically distinguishable from the normal systems both through the 2D KS test and the fit of the Lx-Lopt relation. The optical luminosity of the galaxy system does strongly correlate with the X-ray luminosity of the hot gas component, independently of whether the system is fossil or not. We conclude that our results are consistent with the classical merging scenario of the brightest galaxy formed via merger/cannibalism of other group galaxies, with conservation of the optical light. We find no evidence for a peculiar state of the hot intracluster medium.
We review the formation and evolution of fossil groups and clusters from both the theoretical and the observational points of view. In the optical band, these systems are dominated by the light of the central galaxy. They were interpreted as old syst ems that had enough time to merge all the M* galaxies within the central one. During the last two decades many observational studies were performed to prove the old and relaxed state of fossil systems. The majority of these studies, that spans a wide range of topics including halos global scaling relations, dynamical substructures, stellar populations, and galaxy luminosity functions, seem to challenge this scenario. The general picture that can be obtained by reviewing all the observational works is that the fossil state could be transitional. Indeed, the formation of the large magnitude gap observed in fossil systems could be related to internal processes rather than an old formation.
Numerical simulations as well as optical and X-ray observations over the last few years have shown that poor groups of galaxies can evolve to what is called a fossil group. Dynamical friction as the driving process leads to the coalescence of individ ual galaxies in ordinary poor groups leaving behind nothing more than a central, massive elliptical galaxy supposed to contain the merger history of the whole group. Due to merging timescales for less-massive galaxies and gas cooling timescales of the X-ray intragroup medium exceeding a Hubble time, a surrounding faint-galaxy population having survived this galactic cannibalism as well as an extended X-ray halo similar to that found in ordinary groups, is expected. Recent studies suggest that fossil groups are very abundant and could be the progenitors of brightest cluster galaxies (BCGs) in the centers of rich galaxy clusters. However, only a few objects are known to the literature. This article aims to summarize the results of observational fossil group research over the last few years and presents ongoing work by the authors. Complementary to previous research, the SDSS and RASS surveys have been cross-correlated to identify new fossil structures yielding 34 newly detected fossil group candidates. Observations with ISIS at the 4.2m William Herschel Telescope on La Palma have been carried out to study the stellar populations of the central ellipticals of 6 fossil groups. In addition multi-object spectroscopy with VLTs VIMOS has been performed to study the shape of the OLF of one fossil system.
We want to study how the velocity segregation and the radial profile of the velocity dispersion depend on the prominence of the brightest cluster galaxies (BCGs). We divide a sample of 102 clusters and groups of galaxies into four bins of magnitude g ap between the two brightest cluster members. We then compute the velocity segregation in bins of absolute and relative magnitudes. Moreover, for each bin of magnitude gap we compute the radial profile of the velocity dispersion. When using absolute magnitudes, the segregation in velocity is limited to the two brightest bins and no significant difference is found for different magnitude gaps. However, when we use relative magnitudes, a trend appears in the brightest bin: the larger the magnitude gap, the larger the velocity segregation. We also show that this trend is mainly due to the presence, in the brightest bin, of satellite galaxies in systems with small magnitude gaps: in fact, if we study separately central galaxies and satellites, this trend is mitigated and central galaxies are more segregated than satellites for any magnitude gap. A similar result is found in the radial velocity dispersion profiles: a trend is visible in central regions (where the BCGs dominate) but, if we analyse the profile using satellites alone, the trend disappears. In the latter case, the shape of the velocity dispersion profile in the centre of systems with different magnitude gaps show three types of behaviours: systems with the smallest magnitude gaps have an almost flat profile from the centre to the external regions; systems with the largest magnitude gaps show a monothonical growth from the low values of the central part to the flat ones in the external regions; finally, systems with $1.0 < Delta m_{12} le 1.5$ show a profile that peaks in the centres and then decreases towards the external regions. We suggest that two mechanisms could be respons....
We present Chandra snapshot observations of the first large X-ray sample of optically identified fossil groups. For 9 of 14 candidate groups, we are able to determine the X-ray luminosity and temperature, which span a range typical of large elliptica ls to rich groups of galaxies. We discuss these initial results in the context of group IGM and central galaxy ISM evolution, and we also describe plans for a deep X-ray follow-up program.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا