ترغب بنشر مسار تعليمي؟ اضغط هنا

Loschmidt-amplitude wave function spectroscopy and the physics of dynamically driven phase transitions

59   0   0.0 ( 0 )
 نشر من قبل Dante Marvin Kennes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the Loschmidt amplitude as a powerful tool to perform spectroscopy of generic many-body wave functions and use it to interrogate the wave function obtained after ramping the transverse field quantum Ising model through its quantum critical point. Previous results are confirmed and a more complete understanding of the population of defects and of the effects of magnon-magnon interaction or finite-size corrections is obtained. The influence of quantum coherence is clarified.



قيم البحث

اقرأ أيضاً

118 - D. M. Kennes , D. Schuricht , 2018
We study the dynamics arising from a double quantum quench where the parameters of a given Hamiltonian are abruptly changed from being in an equilibrium phase A to a different phase B and back (A$to$B$to$A). As prototype models, we consider the (inte grable) transverse field Ising as well as the (non-integrable) ANNNI model. The return amplitude features non-analyticities after the first quench through the equilibrium quantum critical point (A$to$B), which is routinely taken as a signature of passing through a so-called dynamical quantum phase transition. We demonstrate that non-analyticities after the second quench (B$to$A) can be avoided and reestablished in a recurring manner upon increasing the time $T$ spent in phase B. The system retains an infinite memory of its past state, and one has the intriguing opportunity to control at will whether or not dynamical quantum phase transitions appear after the second quench.
242 - Gaoyong Sun , Bo-Bo Wei 2020
We analytically and numerically study the Loschmidt echo and the dynamical order parameters in a spin chain with a deconfined phase transition between a dimerized state and a ferromagnetic phase. For quenches from a dimerized state to a ferromagnetic phase, we find that the model can exhibit a dynamical quantum phase transition characterized by an associating dimerized order parameters. In particular, when quenching the system from the Majumdar-Ghosh state to the ferromagnetic Ising state, we find an exact mapping into the classical Ising chain for a quench from the paramagnetic phase to the classical Ising phase by analytically calculating the Loschmidt echo and the dynamical order parameters. By contrast, for quenches from a ferromagnetic state to a dimerized state, the system relaxes very fast so that the dynamical quantum transition may only exist in a short time scale. We reveal that the dynamical quantum phase transition can occur in systems with two broken symmetry phases and the quench dynamics may be independent on equilibrium phase transitions.
We numerically investigate the structure of many-body wave functions of 1D random quantum circuits with local measurements employing the participation entropies. The leading term in system size dependence of participation entropies indicates a multif ractal scaling of the wave-functions at any non-zero measurement rate. The sub-leading term contains universal information about measurement--induced phase transitions and plays the role of an order parameter, being non-zero in the error-correcting phase and vanishing in the quantum Zeno phase. We provide an analytical interpretation of this behavior expressing the participation entropy in terms of partition functions of classical statistical models in 2D.
The equation of state of a system at equilibrium may be derived from the canonical or the grand canonical partition function. The former is a function of temperature T, while the latter also depends on the chemical potential mu for diffusive equilibr ium. In the literature, often the variables beta=(k_BT)^{-1} and fugacity z=exp(beta mu) are used instead. For real beta and z, the partition functions are always positive, being sums of positive terms. Following Lee, Yang and Fisher, we point out that valuable information about the system may be gleaned by examining the zeros of the grand partition function in the complex z plane (real beta), or of the canonical partition function in the complex beta plane. In case there is a phase transition, these zeros close in on the real axis in the thermodynamic limit. Examples are given from the van der Waal gas, and from the ideal Bose gas, where we show that even for a finite system with a small number of particles, the method is useful.
We establish some general dynamical properties of lattice many-body systems that are subject to a high-frequency periodic driving. We prove that such systems have a quasi-conserved extensive quantity $H_*$, which plays the role of an effective static Hamiltonian. The dynamics of the system (e.g., evolution of any local observable) is well-approximated by the evolution with the Hamiltonian $H_*$ up to time $tau_*$, which is exponentially long in the driving frequency. We further show that the energy absorption rate is exponentially small in the driving frequency. In cases where $H_*$ is ergodic, the driven system prethermalizes to a thermal state described by $H_*$ at intermediate times $tlesssim tau_*$, eventually heating up to an infinite-temperature state at times $tsim tau_*$. Our results indicate that rapidly driven many-body systems generically exhibit prethermalization and very slow heating. We briefly discuss implications for experiments which realize topological states by periodic driving.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا