ﻻ يوجد ملخص باللغة العربية
The equation of state of a system at equilibrium may be derived from the canonical or the grand canonical partition function. The former is a function of temperature T, while the latter also depends on the chemical potential mu for diffusive equilibrium. In the literature, often the variables beta=(k_BT)^{-1} and fugacity z=exp(beta mu) are used instead. For real beta and z, the partition functions are always positive, being sums of positive terms. Following Lee, Yang and Fisher, we point out that valuable information about the system may be gleaned by examining the zeros of the grand partition function in the complex z plane (real beta), or of the canonical partition function in the complex beta plane. In case there is a phase transition, these zeros close in on the real axis in the thermodynamic limit. Examples are given from the van der Waal gas, and from the ideal Bose gas, where we show that even for a finite system with a small number of particles, the method is useful.
We calculate zeros of the $q$-state Potts model partition function on $m$th-iterate Sierpinski graphs, $S_m$, in the variable $q$ and in a temperature-like variable, $y$. We infer some asymptotic properties of the loci of zeros in the limit $m to inf
We introduce the Loschmidt amplitude as a powerful tool to perform spectroscopy of generic many-body wave functions and use it to interrogate the wave function obtained after ramping the transverse field quantum Ising model through its quantum critic
Dark states are stationary states of a dissipative, Lindblad-type time evolution with zero von Neumann entropy, therefore representing examples of pure, steady quantum states. Non-equilibrium dynamics featuring a dark state recently gained a lot of a
We discuss the origin of topological defects in phase transitions and analyze their role as a diagnostic tool in the study of the non-equilibrium dynamics of symmetry breaking. Homogeneous second order phase transitions are the focus of our attention
The physics of highly excited Rydberg atoms is governed by blockade or exclusion interactions that hinder the excitation of atoms in the proximity of a previously excited one. This leads to cooperative effects and a relaxation dynamics displaying spa