ﻻ يوجد ملخص باللغة العربية
A locally recoverable (LRC) code is a code over a finite field $mathbb{F}_q$ such that any erased coordinate of a codeword can be recovered from a small number of other coordinates in that codeword. We construct LRC codes correcting more than one erasure, which are subfield-subcodes of some $J$-affine variety codes. For these LRC codes, we compute localities $(r, delta)$ that determine the minimum size of a set $bar{R}$ of positions so that any $delta- 1$ erasures in $bar{R}$ can be recovered from the remaining $r$ coordinates in this set. We also show that some of these LRC codes with lengths $ngg q$ are $(delta-1)$-optimal.
We give a method to construct Locally Recoverable Error-Correcting codes. This method is based on the use of rational maps between affine spaces. The recovery of erasures is carried out by Lagrangian interpolation in general and simply by one addition in some good cases.
A locally recoverable code is an error-correcting code such that any erasure in a coordinate of a codeword can be recovered from a set of other few coordinates. In this article we introduce a model of local recoverable codes that also includes local
A locally recoverable code is an error-correcting code such that any erasure in a single coordinate of a codeword can be recovered from a small subset of other coordinates. In this article we develop an algorithm that computes a recovery structure as
Streaming codes are a class of packet-level erasure codes that are designed with the goal of ensuring recovery in low-latency fashion, of erased packets over a communication network. It is well-known in the streaming code literature, that diagonally
A Locally Recoverable code is an error-correcting code such that any erasure in a single coordinate of a codeword can be recovered from a small subset of other coordinates. We study Locally Recoverable Algebraic Geometry codes arising from certain cu