ترغب بنشر مسار تعليمي؟ اضغط هنا

Dyonic Catalysis in the KPV Vacuum Decay

91   0   0.0 ( 0 )
 نشر من قبل Norihiro Tanahashi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate catalysis induced by a dyonic impurity in the metastable vacuum studied by Kachru, Pearson and Verlinde, which can be relevant to vacuum decay in the KKLT scenario. The impurity is a D3-brane wrapping on $ mathbb{S}^3$ in the Klebanov-Strassler geometry. The effect of the D3-brane can be encoded in the world-volume theory of an NS5-brane as an electromagnetic field on it. As the field strength becomes large, instability of the vacuum enhances. As a result, the lifetime of the metastable vacuum becomes drastically shorter.



قيم البحث

اقرأ أيضاً

We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum at high temperature. We find that the energy barrier for transitions to the new vacuum, which determines the expon ential suppression of the nucleation rate, can be reduced significantly, or even eliminated completely, in the black-hole background if the Standard Model Higgs is coupled to gravity through the renormalizable term $xi {cal R} h^2$.
We provide a novel, concise and self-contained evaluation of true- and false vacuum decay rates in general relativity. We insist on general covariance and choose observable boundary conditions, which yields the well known false-vacuum decay rate and a new true-vacuum decay rate that differs significantly from prior work. The rates of true- and false vacuum decays are identical in general relativity. The second variation of the action has a negative mode for all parameters. Our findings imply a new perspective on cosmological initial conditions and the ultimate fate of our universe.
We examine the effect of large extra dimensions on vacuum decay in the Randall-Sundrum (RS) braneworld paradigm. We assume the scalar field is confined to the brane, and compute the probability for forming an anti de Sitter (AdS) bubble inside a crit ical flat RS brane. We present the first full numerical solutions for the brane instanton considering two test potentials for the scalar field. We explore the geometrical impact of thin and thick bubble walls, and compute the instanton action in a range of cases. We conclude by commenting on a more physically realistic potential relevant for the standard model Higgs. For bubbles with large backreaction, the extra dimension has a dramatic effect on the tunnelling rate, however, for the weakly backreacting bubbles more relevant for realistic Standard Model potentials, the extra dimension has little impact.
101 - Adam R. Brown 2017
The thin-wall approximation gives a simple estimate of the decay rate of an unstable quantum field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually two different thin-wall approximations and that they br acket the true decay rate: I prove that one is an upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the presence of gravity, a generalization of this lemma provides a simple sufficient condition for non-perturbative vacuum instability.
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an uppe r bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well-defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا