ﻻ يوجد ملخص باللغة العربية
The thin-wall approximation gives a simple estimate of the decay rate of an unstable quantum field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually two different thin-wall approximations and that they bracket the true decay rate: I prove that one is an upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the presence of gravity, a generalization of this lemma provides a simple sufficient condition for non-perturbative vacuum instability.
We study tunneling between vacua in multi-dimensional field spaces. Working in the strict thin wall approximation, we find that the conventional instantons for false vacuum decay develop a new vanishing eigenvalue in their fluctuation determinant, ar
We examine the effect of large extra dimensions on vacuum decay in the Randall-Sundrum (RS) braneworld paradigm. We assume the scalar field is confined to the brane, and compute the probability for forming an anti de Sitter (AdS) bubble inside a crit
We provide a novel, concise and self-contained evaluation of true- and false vacuum decay rates in general relativity. We insist on general covariance and choose observable boundary conditions, which yields the well known false-vacuum decay rate and
We investigate catalysis induced by a dyonic impurity in the metastable vacuum studied by Kachru, Pearson and Verlinde, which can be relevant to vacuum decay in the KKLT scenario. The impurity is a D3-brane wrapping on $ mathbb{S}^3$ in the Klebanov-
Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or e