ﻻ يوجد ملخص باللغة العربية
The structure and the energy spectrum of the $eta^{prime}$ mesonic nuclei are investigated in a relativistic mean field theory. One expects a substantial attraction for the $eta^{prime}$ meson in finite nuclei due to the partial restoration of chiral symmetry in the nuclear medium. Such a hadronic scale interaction for the $eta^{prime}$ mesonic nuclei may provide modification of the nuclear structure. The relativistic mean field theory is a self-contained model for finite nuclei which provides the saturation property within the model, and is good to investigate the structure change of the nucleus induced by the $eta^{prime}$ meson. Using the local density approximation for the mean fields, we solve the equations of motion for the nucleons and the $eta^{prime}$ meson self-consistently, and obtain the nuclear density distribution and the $eta^{prime}$ energy spectrum for the $eta^{prime}$ mesonic nuclei. We take $^{12}$C, $^{16}$O and $^{40}$Ca for the target nuclei. We find several bound states of the $eta^{prime}$ meson for these nuclei thanks to the attraction for $eta^{prime}$ in nuclei. We also find a sufficient change of the nuclear structure especially for the $1s$ bound state of $eta^{prime}$. This implies that the production of the $1s$ bound state in nuclear reaction may be suppressed.
We investigate the relativistic mean field theory of nuclear matter at finite temperature and baryon density taking into account of nonlinear statistical effects, characterized by power-law quantum distributions. The analysis is performed by requirin
The Physical origin of the nuclear symmetry energy is studied within the relativistic mean field (RMF) theory. Based on the nuclear binding energies calculated with and without mean isovector potential for several isobaric chains we conform earlier S
We study eta meson properties in the infinite nuclear matter and in atomic nuclei with an emphasis on effects of the eta coupling to N*(1535)--nucleon-hole modes. The N*(1535) resonance, which dominates the low-energy eta-nucleon scattering, can be s
A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties o
We analyze the localization properties of two-body correlations induced by pairing in the framework of relativistic mean field (RMF) models. The spatial properties of two-body correlations are studied for the pairing tensor in coordinate space and fo