ﻻ يوجد ملخص باللغة العربية
We analyze the localization properties of two-body correlations induced by pairing in the framework of relativistic mean field (RMF) models. The spatial properties of two-body correlations are studied for the pairing tensor in coordinate space and for the Cooper pair wave function. The calculations are performed both with Relativistic-Hatree-Bogoliubov (RHB) and RMF+Projected-BCS (PBCS) models and taking as examples the nuclei $^{66}$Ni, $^{124}$Sn and $^{200}$Pb. It is shown that the coherence length have the same pattern as in previous non-relativistic HFB calculations, i.e., it is maximum in the interior of the nucleus and drops to a minimum in the surface region. In the framework of RMF+PBCS we have also analysed, for the particular case of $^{120}$Sn, the dependence of the coherence length on the intensity of the pairing force. This analysis indicates that pairing is reducing the coherence length by about 25-30 $%$ compared to the RMF limit.
In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even$-$even isotopes of Fe, Ni, Zn, Ge, Se and Kr within the framework of the axially deformed self-consistent relativist
In this work, we study the arising of correlations among some isoscalar ($K_o$, $Q_o$, and $I_o$) and isovector ($J$, $L_o$, $K_{sym}^o$, $Q_{sym}^o$, and $I_{sym}^o$) bulk parameters in nonrelativistic and relativistic hadronic mean-field models. Fo
High-spin rotational bands in rare-earth Er ($Z=68$), Tm ($Z=69$) and Yb ($Z=70$) isotopes are investigated by three different nuclear models. These are (i) the cranked relativistic Hartree-Bogoliubov (CRHB) approach with approximate particle number
The structure and the energy spectrum of the $eta^{prime}$ mesonic nuclei are investigated in a relativistic mean field theory. One expects a substantial attraction for the $eta^{prime}$ meson in finite nuclei due to the partial restoration of chiral
For the first time, we apply the temperature dependent relativistic mean field (TRMF) model to study the ternary fission of heavy nucleus using level density approach. The probability of yields of a particular fragment is obtained by evaluating the c