ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of antiferromagnetic order on Landau level splitting of quasi-two-dimensional Dirac fermions in EuMnBi$_2$

80   0   0.0 ( 0 )
 نشر من قبل Hideaki Sakai
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report spin-split Landau levels of quasi-two-dimensional Dirac fermions in a layered antiferromagnet EuMnBi$_2$, as revealed by interlayer resistivity measurements in a tilted magnetic field up to $sim$35 T. The amplitude of Shubnikov-de Haas (SdH) oscillation in interlayer resistivity is strongly modulated by changing the tilt angle of the field, i.e., the Zeeman-to-cyclotron energy ratio. The effective $g$ factor estimated from the tilt angle, where the SdH oscillation exhibits a phase inversion, differs by approximately 50% between two antiferromagnetic phases. This observation signifies a marked impact of the magnetic order of Eu sublattice on the Dirac-like band structure. The origin may be sought in strong exchange coupling with the local Eu moments, as verified by the first-principles calculation.



قيم البحث

اقرأ أيضاً

For the innovation of spintronic technologies, Dirac materials, in which the low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems, because of the fascinating magnetotransport associated with the ext remely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We here report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi$_2$, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility more than 10,000 cm$^2$/Vs, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials.
106 - Si Li , Ying Liu , Zhi-Ming Yu 2019
Dirac point in two-dimensional (2D) materials has been a fascinating subject of research. Recently, it has been theoretically predicted that Dirac point may also be stabilized in 2D magnetic systems. However, it remains a challenge to identify concre te 2D materials which host such magnetic Dirac point. Here, based on first-principles calculations and theoretical analysis, we propose a stable 2D material, the monolayers TaCoTe$_2$, as an antiferromagnetic (AFM) 2D Dirac material. We show that it has an AFM ground state with an out-of-plane N{e}el vector. It hosts a pair of 2D AFM Dirac points on the Fermi level in the absence of spin-orbit coupling (SOC). When the SOC is considered, a small gap is opened at the original Dirac points. Meanwhile, another pair of Dirac points appear on the Brillouin zone boundary below the Fermi level, which are robust under SOC and have a type-II dispersion. Such a type-II AFM Dirac point has not been observed before. We further show that the location of this Dirac point as well as its dispersion type can be controlled by tuning the N{e}el vector orientation.
213 - M. Horio , C. E. Matt , K. Kramer 2018
Relativistic massless Dirac fermions can be probed with high-energy physics experiments, but appear also as low-energy quasi-particle excitations in electronic band structures. In condensed matter systems, their massless nature can be protected by cr ystal symmetries. Classification of such symmetry-protected relativistic band degeneracies has been fruitful, although many of the predicted quasi-particles still await their experimental discovery. Here we reveal, using angle-resolved photoemission spectroscopy, the existence of two-dimensional type-II Dirac fermions in the high-temperature superconductor La$_{1.77}$Sr$_{0.23}$CuO$_4$. The Dirac point, constituting the crossing of $d_{x^2-y^2}$ and $d_{z^2}$ bands, is found approximately one electronvolt below the Fermi level ($E_mathrm{F}$) and is protected by mirror symmetry. If spin-orbit coupling is considered, the Dirac point degeneracy is lifted and the bands acquire a topologically non-trivial character. In certain nickelate systems, band structure calculations suggest that the same type-II Dirac fermions can be realised near $E_mathrm{F}$.
Low-temperature magnetic resonance study of the quasi-two-dimensional antiferromagnet Cu(en)(H$_2$O)$_2$SO$_4$ (en = C$_2$H$_8$N$_2$) was performed down to 0.45~K. This compound orders antiferromagnetically at 0.9K. The analysis of the resonance data within the hydrodynamic approach allowed to identify anisotropy axes and to estimate the anisotropy parameters for the antiferromagnetic phase. Dipolar spin-spin coupling turns out to be the main contribution to the anisotropy of the antiferromagnetic phase. The splitting of the resonance modes and its non-monotonous dependency on the applied frequency was observed below 0.6K in all three field orientations. Several models were discussed to explain the origin of the nontrivial splitting and the existence of inequivalent magnetic subsystems in Cu(en)(H$_2$O)$_2$SO$_4$ was chosen as the most probable source.
Two-dimensional Dirac fermions are subjected to two types of interactions, namely the long-range Coulomb interaction and the short-range on-site interaction. The former induces excitonic pairing if its strength $alpha$ is larger than some critical va lue $alpha_c$, whereas the latter drives an antiferromagnetic Mott transition when its strength $U$ exceeds a threshold $U_c$. Here, we study the impacts of the interplay of these two interactions on excitonic pairing with the Dyson-Schwinger equation approach. We find that the critical value $alpha_c$ is increased by weak short-range interaction. As $U$ increases to approach $U_c$, the quantum fluctuation of antiferromagnetic order parameter becomes important and interacts with the Dirac fermions via the Yukawa coupling. After treating the Coulomb interaction and Yukawa coupling interaction on an equal footing, we show that $alpha_c$ is substantially increased as $U rightarrow U_c$. Thus, the excitonic pairing is strongly suppressed near the antiferromagnetic quantum critical point. We obtain a global phase diagram on the $U$-$alpha$ plane, and illustrate that the excitonic insulating and antiferromagnetic phases are separated by an intermediate semimetal phase. These results provide a possible explanation of the discrepancy between recent theoretical progress on excitonic gap generation and existing experiments in suspended graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا