ﻻ يوجد ملخص باللغة العربية
Two-dimensional Dirac fermions are subjected to two types of interactions, namely the long-range Coulomb interaction and the short-range on-site interaction. The former induces excitonic pairing if its strength $alpha$ is larger than some critical value $alpha_c$, whereas the latter drives an antiferromagnetic Mott transition when its strength $U$ exceeds a threshold $U_c$. Here, we study the impacts of the interplay of these two interactions on excitonic pairing with the Dyson-Schwinger equation approach. We find that the critical value $alpha_c$ is increased by weak short-range interaction. As $U$ increases to approach $U_c$, the quantum fluctuation of antiferromagnetic order parameter becomes important and interacts with the Dirac fermions via the Yukawa coupling. After treating the Coulomb interaction and Yukawa coupling interaction on an equal footing, we show that $alpha_c$ is substantially increased as $U rightarrow U_c$. Thus, the excitonic pairing is strongly suppressed near the antiferromagnetic quantum critical point. We obtain a global phase diagram on the $U$-$alpha$ plane, and illustrate that the excitonic insulating and antiferromagnetic phases are separated by an intermediate semimetal phase. These results provide a possible explanation of the discrepancy between recent theoretical progress on excitonic gap generation and existing experiments in suspended graphene.
We study the quantum criticality of the phase transition between the Dirac semimetal and the excitonic insulator in two dimensions. Even though the system has a semimetallic ground state, there are observable effects of excitonic pairing at finite te
We study excitonic effects in two-dimensional massless Dirac fermions with Coulomb interactions by solving the ladder approximation to the Bethe-Salpeter equation. It is found that the general 4-leg vertex has a power law behavior with the exponent g
We employed first-principles density-functional theory (DFT) calculations to characterize Dirac electrons in quasi-two-dimensional molecular conductor $alpha$-(BETS)$_2$I$_3$ [= $alpha$-(BEDT-TSeF)$_2$I$_3$] at a low temperature of 30K. We provide a
In this paper we discuss the N$acute{e}$el and Kekul$acute{e}$ valence bond solids quantum criticality in graphene Dirac semimetal. Considering the quartic four-fermion interaction $g(bar{psi}_iGamma_{ij}psi_j)^2$ that contains spin,valley, and subla
We use determinant quantum Monte Carlo (DQMC) simulations to study the role of electron-electron interactions on three-dimensional (3D) Dirac fermions based on the $pi$-flux model on a cubic lattice. We show that the Hubbard interaction drives the 3D