ﻻ يوجد ملخص باللغة العربية
We use functional renormalization group method to study a three-orbital model for superconducting Sr$_2$RuO$_4$. Although the pairing symmetry is found to be chiral $p$-wave, the atomic spin-orbit coupling induces near-nodes for quasiparticle excitations. Our theory explains a major experimental puzzle between $d$-wave-like feature observed in thermal experiments and the chiral $p$-wave triplet pairing revealed in nuclear-magnetic-resonance and Kerr effect.
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr$_2$RuO$_4$ is the first prime candidate for topological chiral p-wave superconductivity, wh
Unambiguous identification of the superconducting order parameter symmetry of Sr$_2$RuO$_4$ has remained elusive for more than a quarter century. While a chiral $p$-wave ground state analogue to superfluid $^3$He-$A$ was ruled out only very recently,
Sr$_2$RuO$_4$ is a leading candidate for chiral $p$-wave superconductivity. The detailed mechanism of superconductivity in this material is still the subject of intense investigations. Since superconductivity is sensitive to the topology of the Fermi
Motivated by the success of experimental manipulation of the band structure through biaxial strain in Sr$_2$RuO$_4$ thin film grown on a mismatched substrate, we investigate theoretically the effects of biaxial strain on the electronic instabilities,
Despite much effort for over the two decades, the paring symmetry of a Sr$_2$RuO$_4$ superconductor has been still unclear. In this Rapid Communication, motivated by the recent rapid progress in fabrication techniques for Sr$_2$RuO$_4$ thin-films, we