ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrable differential systems of topological type and reconstruction by the topological recursion

168   0   0.0 ( 0 )
 نشر من قبل Olivier Marchal
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from a $dtimes d$ rational Lax pair system of the form $hbar partial_x Psi= LPsi$ and $hbar partial_t Psi=RPsi$ we prove that, under certain assumptions (genus $0$ spectral curve and additional conditions on $R$ and $L$), the system satisfies the topological type property. A consequence is that the formal $hbar$-WKB expansion of its determinantal correlators, satisfy the topological recursion. This applies in particular to all $(p,q)$ minimal models reductions of the KP hierarchy, or to the six Painleve systems.



قيم البحث

اقرأ أيضاً

108 - Olivier Marchal 2017
The purpose of this article is to analyze the connection between Eynard-Orantin topological recursion and formal WKB solutions of a $hbar$-difference equation: $Psi(x+hbar)=left(e^{hbarfrac{d}{dx}}right) Psi(x)=L(x;hbar)Psi(x)$ with $L(x;hbar)in GL_2 ( (mathbb{C}(x))[hbar])$. In particular, we extend the notion of determinantal formulas and topological type property proposed for formal WKB solutions of $hbar$-differential systems to this setting. We apply our results to a specific $hbar$-difference system associated to the quantum curve of the Gromov-Witten invariants of $mathbb{P}^1$ for which we are able to prove that the correlation functions are reconstructed from the Eynard-Orantin differentials computed from the topological recursion applied to the spectral curve $y=cosh^{-1}frac{x}{2}$. Finally, identifying the large $x$ expansion of the correlation functions, proves a recent conjecture made by B. Dubrovin and D. Yang regarding a new generating series for Gromov-Witten invariants of $mathbb{P}^1$.
In this paper, we show that it is always possible to deform a differential equation $partial_x Psi(x) = L(x) Psi(x)$ with $L(x) in mathfrak{sl}_2(mathbb{C})(x)$ by introducing a small formal parameter $hbar$ in such a way that it satisfies the Topolo gical Type properties of Berg`ere, Borot and Eynard. This is obtained by including the former differential equation in an isomonodromic system and using some homogeneity conditions to introduce $hbar$. The topological recursion is then proved to provide a formal series expansion of the corresponding tau-function whose coefficients can thus be expressed in terms of intersections of tautological classes in the Deligne-Mumford compactification of the moduli space of surfaces. We present a few examples including any Fuchsian system of $mathfrak{sl}_2(mathbb{C})(x)$ as well as some elements of Painleve hierarchies.
130 - B. Eynard 2014
This review is an extended version of the Seoul ICM 2014 proceedings.It is a short overview of the topological recursion, a relation appearing in the asymptotic expansion of many integrable systems and in enumerative problems. We recall how computing large size asymptotics in random matrices, has allowed to discover some fascinating and ubiquitous geometric invariants. Specializations of this method recover many classical invariants, like Gromov--Witten invariants, or knot polynomials (Jones, HOMFLY,...). In this short review, we give some examples, give definitions, and review some properties and applications of the formalism.
75 - Bertrand Eynard 2019
We show that for a rather generic set of regular spectral curves, the Topological-Recursion invariants F_g grow at most like $O((beta g)! r^{-g}) $ with some $r>0$ and $betaleq 5$.
The goal of this article is to rederive the connection between the Painleve $5$ integrable system and the universal eigenvalues correlation functions of double-scaled hermitian matrix models, through the topological recursion method. More specificall y we prove, textbf{to all orders}, that the WKB asymptotic expansions of the $tau$-function as well as of determinantal formulas arising from the Painleve $5$ Lax pair are identical to the large $N$ double scaling asymptotic expansions of the partition function and correlation functions of any hermitian matrix model around a regular point in the bulk. In other words, we rederive the sine-law universal bulk asymptotic of large random matrices and provide an alternative perturbative proof of universality in the bulk with only algebraic methods. Eventually we exhibit the first orders of the series expansion up to $O(N^{-5})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا