ﻻ يوجد ملخص باللغة العربية
Let $(A,mathfrak{m})$ be an excellent normal domain of dimension two. We define an $mathfrak{m}$-primary ideal $I$ to be a $p_g$-ideal if the Rees algebra $A[It]$ is a Cohen-Macaulay normal domain. When $A$ contains an algebraically closed field $k cong A/mathfrak{m}$ then Okuma, Watanabe and Yoshida proved that $A$ has $p_g$-ideals and furthermore product of two $p_g$-ideals is a $p_g$ ideal. In this article we show that if $A$ is an excellent normal domain of dimension two containing a field $k cong A/mathfrak{m}$ of characteristic zero then also $A$ has $p_g$-ideals. Furthermore product of two $p_g$-ideals is $p_g$.
We define the notion of a power stable ideal in a polynomial ring $ R[X]$ over an integral domain $ R $. It is proved that a maximal ideal $chi$ $ M $ in $ R[X]$ is power stable if and only if $ P^t $ is $ P$- primary for all $ tgeq 1 $ for the prime
Let $k$ be a field and $G subseteq Gl_n(k)$ be a finite group with $|G|^{-1} in k$. Let $G$ act linearly on $A = k[X_1, ldots, X_n]$ and let $A^G$ be the ring of invariants. Suppose there does not exist any non-trivial one-dimensional representation
Jet schemes and arc spaces received quite a lot of attention by researchers after their introduction, due to J. Nash, and established their importance as an object of study in M. Kontsevichs motivic integration theory. Several results point out that
We consider the fiber cone of monomial ideals. It is shown that for monomial ideals $Isubset K[x,y]$ of height $2$, generated by $3$ elements, the fiber cone $F(I)$ of $I$ is a hypersurface ring, and that $F(I)$ has positive depth for interesting cla
We characterize the graphs $G$ for which their toric ideals $I_G$ are complete intersections. In particular we prove that for a connected graph $G$ such that $I_G$ is complete intersection all of its blocks are bipartite except of at most two. We pro