ترغب بنشر مسار تعليمي؟ اضغط هنا

On Complete Intersection toric ideals of graphs

253   0   0.0 ( 0 )
 نشر من قبل Apostolos Thoma
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize the graphs $G$ for which their toric ideals $I_G$ are complete intersections. In particular we prove that for a connected graph $G$ such that $I_G$ is complete intersection all of its blocks are bipartite except of at most two. We prove that toric ideals of graphs which are complete intersections are circuit ideals. The generators of the toric ideal correspond to even cycles of $G$ except of at most one generator, which corresponds to two edge disjoint odd cycles joint at a vertex or with a path. We prove that the blocks of the graph satisfy the odd cycle condition. Finally we characterize all complete intersection toric ideals of graphs which are normal.



قيم البحث

اقرأ أيضاً

Our purpose is to study the family of simple undirected graphs whose toric ideal is a complete intersection from both an algorithmic and a combinatorial point of view. We obtain a polynomial time algorithm that, given a graph $G$, checks whether its toric ideal $P_G$ is a complete intersection or not. Whenever $P_G$ is a complete intersection, the algorithm also returns a minimal set of generators of $P_G$. Moreover, we prove that if $G$ is a connected graph and $P_G$ is a complete intersection, then there exist two induced subgraphs $R$ and $C$ of $G$ such that the vertex set $V(G)$ of $G$ is the disjoint union of $V(R)$ and $V(C)$, where $R$ is a bipartite ring graph and $C$ is either the empty graph, an odd primitive cycle, or consists of two odd primitive cycles properly connected. Finally, if $R$ is $2$-connected and $C$ is connected, we list the families of graphs whose toric ideals are complete intersection.
We study the complete intersection property and the algebraic invariants (index of regularity, degree) of vanishing ideals on degenerate tori over finite fields. We establish a correspondence between vanishing ideals and toric ideals associated to nu merical semigroups. This correspondence is shown to preserve the complete intersection property, and allows us to use some available algorithms to determine whether a given vanishing ideal is a complete intersection. We give formulae for the degree, and for the index of regularity of a complete intersection in terms of the Frobenius number and the generators of a numerical semigroup.
In this paper we completely characterize lattice ideals that are complete intersections or equivalently complete intersections finitely generated semigroups of $bz^noplus T$ with no invertible elements, where $T$ is a finite abelian group. We also ch aracterize the lattice ideals that are set-theoretic complete intersections on binomials.
The first goal of the present paper is to study the class groups of the edge rings of complete multipartite graphs, denoted by $Bbbk[K_{r_1,ldots,r_n}]$, where $1 leq r_1 leq cdots leq r_n$. More concretely, we prove that the class group of $Bbbk[K_{ r_1,ldots,r_n}]$ is isomorphic to $mathbb{Z}^n$ if $n =3$ with $r_1 geq 2$ or $n geq 4$, while it turns out that the excluded cases can be deduced into Hibi rings. The second goal is to investigate the special class of divisorial ideals of $Bbbk[K_{r_1,ldots,r_n}]$, called conic divisorial ideals. We describe conic divisorial ideals for certain $K_{r_1,ldots,r_n}$ including all cases where $Bbbk[K_{r_1,ldots,r_n}]$ is Gorenstein. Finally, we give a non-commutative crepant resolution (NCCR) of $Bbbk[K_{r_1,ldots,r_n}]$ in the case where it is Gorenstein.
Let $I_G$ be the toric ideal of a graph $G$. We characterize in graph theoretical terms the primitive, the minimal, the indispensable and the fundamental binomials of the toric ideal $I_G$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا