ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting circuit quantum computing with nanomechanical resonators as storage

142   0   0.0 ( 0 )
 نشر من قبل Marek Pechal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the quantum information processing capability of a superconducting transmon circuit used to mediate interactions between quantum information stored in a collection of phononic crystal cavity resonators. Having only a single processing element to be controlled externally makes this approach significantly less hardware-intensive than traditional architectures with individual control of each qubit. Moreover, when compared with the commonly considered alternative approach using coplanar waveguide or 3d cavity microwave resonators for storage, the nanomechanical resonators offer both very long lifetime and small size -- two conflicting requirements for microwave resonators. A detailed gate error analysis leads to an optimal value for the qubit-resonator coupling rate as a function of the number of mechanical resonators in the system. For a given set of system parameters, a specific amount of coupling and number of resonators is found to optimize the quantum volume, an approximate measure for the computational capacity of a system. We see this volume is higher in the proposed hybrid nanomechanical architecture than in the competing on-chip electromagnetic approach.



قيم البحث

اقرأ أيضاً

252 - J. Yu , J. C. Retamal , M. Sanz 2021
We propose a superconducting circuit architecture suitable for digital-analog quantum computing (DAQC) based on an enhanced NISQ family of nearest-neighbor interactions. DAQC makes a smart use of digital steps (single qubit rotations) and analog bloc ks (parametrized multiqubit operations) to outperform digital quantum computing algorithms. Our design comprises a chain of superconducting charge qubits coupled by superconducting quantum interference devices (SQUIDs). Using magnetic flux control, we can activate/deactivate exchange interactions, double excitation/de-excitations, and others. As a paradigmatic example, we present an efficient simulation of an $elltimes h$ fermion lattice (with $2<ell leq h$), using only $2(2ell+1)^2+24$ analog blocks. The proposed architecture design is feasible in current experimental setups for quantum computing with superconducting circuits, opening the door to useful quantum advantage with fewer resources.
We present a scheme for tuning and controlling nano mechanical resonators by subjecting them to electrostatic gradient fields, provided by nearby tip electrodes. We show that this approach enables access to a novel regime of optomechanics, where the intrinsic nonlinearity of the nanoresonator can be explored. In this regime, one or several laser driven cavity modes coupled to the nanoresonator and suitably adjusted gradient fields allow to control the motional state of the nanoresonator at the single phonon level. Some applications of this platform have been presented previously [New J. Phys. 14, 023042 (2012), Phys. Rev. Lett. 110, 120503 (2013)]. Here, we provide a detailed description of the corresponding setup and its optomechanical coupling mechanisms, together with an in-depth analysis of possible sources of damping or decoherence and a discussion of the readout of the nanoresonator state.
We consider a nanomechanical analogue of a nonlinear interferometer, consisting of two parallel, flexural nanomechanical resonators, each with an intrinsic Duffing nonlinearity and with a switchable beamsplitter-like coupling between them. We calcula te the precision with which the strength of the nonlinearity can be estimated and show that it scales as $1/n^{3/2}$, where $n$ is the mean phonon number of the initial state. This result holds even in the presence of dissipation, but assumes the ability to make measurements of the quadrature components of the nanoresonators.
The observation of quantized nanomechanical oscillations by detecting femtometer-scale displacements is a significant challenge for experimentalists. We propose that phonon blockade can serve as a signature of quantum behavior in nanomechanical reson ators. In analogy to photon blockade and Coulomb blockade for electrons, the main idea for phonon blockade is that the second phonon cannot be excited when there is one phonon in the nonlinear oscillator. To realize phonon blockade, a superconducting quantum two-level system is coupled to the nanomechanical resonator and is used to induce the phonon self-interaction. Using Monte Carlo simulations, the dynamics of the induced nonlinear oscillator is studied via the Cahill-Glauber $s$-parametrized quasiprobability distributions. We show how the oscillation of the resonator can occur in the quantum regime and demonstrate how the phonon blockade can be observed with currently accessible experimental parameters.
We propose a novel architecture for superconducting circuits to improve the efficiency of a quantum annealing system. To increase the capability of a circuit, it is desirable for a qubit to be coupled not only with adjacent qubits but also with other qubits located far away. We introduce a circuit that uses a lumped element resonator coupled each with one qubit. The resonator-qubit pairs are coupled by rf-superconducting quantum interference device (SQUID) based couplers. These pairs make a large quantum system for quantum annealer. This system could prepare the problem Hamiltonian and tune the parameters for quantum annealing procedure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا