ﻻ يوجد ملخص باللغة العربية
The observation of quantized nanomechanical oscillations by detecting femtometer-scale displacements is a significant challenge for experimentalists. We propose that phonon blockade can serve as a signature of quantum behavior in nanomechanical resonators. In analogy to photon blockade and Coulomb blockade for electrons, the main idea for phonon blockade is that the second phonon cannot be excited when there is one phonon in the nonlinear oscillator. To realize phonon blockade, a superconducting quantum two-level system is coupled to the nanomechanical resonator and is used to induce the phonon self-interaction. Using Monte Carlo simulations, the dynamics of the induced nonlinear oscillator is studied via the Cahill-Glauber $s$-parametrized quasiprobability distributions. We show how the oscillation of the resonator can occur in the quantum regime and demonstrate how the phonon blockade can be observed with currently accessible experimental parameters.
We analyze the quantum information processing capability of a superconducting transmon circuit used to mediate interactions between quantum information stored in a collection of phononic crystal cavity resonators. Having only a single processing elem
We propose and experimentally demonstrate a technique for coupling phonons out of an optomechanical crystal cavity. By designing a perturbation that breaks a symmetry in the elastic structure, we selectively induce phonon leakage without affecting th
We present a scheme for tuning and controlling nano mechanical resonators by subjecting them to electrostatic gradient fields, provided by nearby tip electrodes. We show that this approach enables access to a novel regime of optomechanics, where the
We consider a nanomechanical analogue of a nonlinear interferometer, consisting of two parallel, flexural nanomechanical resonators, each with an intrinsic Duffing nonlinearity and with a switchable beamsplitter-like coupling between them. We calcula
We study resonant response of an underdamped nanomechanical resonator with fluctuating frequency. The fluctuations are due to diffusion of molecules or microparticles along the resonator. They lead to broadening and change of shape of the oscillator