ﻻ يوجد ملخص باللغة العربية
A recent experimental breakthrough allowed to probe electronic parametric resonance of a single magnetic atom in an STM setup. The results present intriguing features, such as an asymmetric lineshape and unusually large ratio of the decoherence and decay rates, which defy standard approaches using the conventional Bloch equations. To address these issues we employ novel generalized Bloch equations, together with proper microscopic modeling of the magnetic adatom, and show how all the experimental features can naturally be accounted for. The proposed approach may also be useful in treating any future similar experiments, as well as next generation hybrid quantum devices.
Combining electron paramagnetic resonance (EPR) with scanning tunneling microscopy (STM) enables detailed insight into the interactions and magnetic properties of single atoms on surfaces. A requirement for EPR-STM is the efficient coupling of microw
We report a dual resonance feature in ballistic conductance through a quantum Hall graphene nanoribbon with a magnetic quantum dot. Such a magnetic quantum dot localizes Dirac fermions exhibiting anisotropic eigenenergy spectra with broken time-rever
We report optically detected nuclear magnetic resonance (ODNMR) measurements on small ensembles of nuclear spins in single GaAs quantum dots. Using ODNMR we make direct measurements of the inhomogeneous Knight field from a photo-excited electron whic
Magnetic resonance imaging (MRI) revolutionized diagnostic medicine and biomedical research by allowing a noninvasive access to spin ensembles. To enhance MRI resolution to the nanometer scale, new approaches including scanning probe methods have bee
We demonstrate electron spin polarization detection and electron paramagnetic resonance (EPR) spectroscopy using a direct current superconducting quantum interference device (dc-SQUID) magnetometer. Our target electron spin ensemble is directly glued