ﻻ يوجد ملخص باللغة العربية
The 3D topological insulator (TI) PN junction under magnetic fields presents a novel transport property which is investigated both theoretically and numerically in this paper. Transport in this device can be tuned by the axial magnetic field. Specifically, the scattering coefficients between incoming and outgoing modes oscillate with axial magnetic flux at the harmonic form. In the condition of horizontal mirror symmetry, the initial phase of the harmonic oscillation is dependent on the parities of incoming and outgoing modes. This symmetry is broken when a vertical bias is applied which leads to a kinetic phase shift added to the initial phase. On the other hand, the amplitude of oscillation is suppressed by the surface disorder while it has no influence on the phase of oscillation. Furthermore, with the help of the vertical bias, a special (1,-2) 3D TI PN junction can be achieved, leading to a novel spin precession phenomenon.
Electrical transport in three dimensional topological insulators(TIs) occurs through spin-momentum locked topological surface states that enclose an insulating bulk. In the presence of a magnetic field, surface states get quantized into Landau levels
We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locall
We review our recent works on the quantum transport, mainly in topological semimetals and also in topological insulators, organized according to the strength of the magnetic field. At weak magnetic fields, we explain the negative magnetoresistance in
Recent acoustic and electrical-circuit experiments have reported the third-order (or octupole) topological insulating phase, while its counterpart in classical magnetic systems is yet to be realized. Here we explore the collective dynamics of magneti
Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field is investigated