ﻻ يوجد ملخص باللغة العربية
In this paper, we use the dimer method to obtain the free energy of Ising models consisting of repeated horizontal strips of width $m$ connected by sequences of vertical strings of length $n$ mutually separated by distance $N$, with $N$ arbitrary, to investigate the effects of connectivity and proximity on the specific heat. The decoration method is used to transform the strings of $n+1$ spins interacting with their nearest neighbors with coupling $J$ into a pair with coupling $bar J$ between the two spins. The free energy per site is given as a single integral and some results for critical temperatures are derived.
The bond-propagation (BP) algorithm for the specific heat of the two dimensional Ising model is developed and that for the internal energy is completed. Using these algorithms, we study the critical internal energy and specific heat of the model on t
We study a two dimensional Ising model between thermostats at different temperatures. By applying the recently introduced KQ dynamics, we show that the system reaches a steady state with coexisting phases transversal to the heat flow. The relevance o
The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists the very first application of the concept of energy quantization to describe the physical properties of a real system. I
In order to investigate the effects of connectivity and proximity in the specific heat, a special class of exactly solvable planar layered Ising models has been studied in the thermodynamic limit. The Ising models consist of repeated uniform horizont
We show that systems with negative specific heat can violate the zeroth law of thermodynamics. By both numerical simulations and by using exact expressions for free energy and microcanonical entropy it is shown that if two systems with the same inten