ﻻ يوجد ملخص باللغة العربية
In order to investigate the effects of connectivity and proximity in the specific heat, a special class of exactly solvable planar layered Ising models has been studied in the thermodynamic limit. The Ising models consist of repeated uniform horizontal strips of width $m$ connected by sequences of vertical strings of length $n$ mutually separated by distance $N$, with $N=1,2$ and $3$. We find that the critical temperature $T_c(N,m,n)$, arising from the collective effects, decreases as $n$ and $N$ increase, and increases as $m$ increases, as it should be. The amplitude $A(N,m,n)$ of the logarithmic divergence at the bulk critical temperature $T_c(N,m,n)$ becomes smaller as $n$ and $m$ increase. A rounded peak, with size of order $ln m$ and signifying the one-dimensional behavior of strips of finite width $m$, appears when $n$ is large enough. The appearance of these rounded peaks does not depend on $m$ as much, but depends rather more on $N$ and $n$, which is rather perplexing. Moreover, for fixed $m$ and $n$, the specific heats are not much different for different $N$. This is a most surprising result. For $N=1$, the spin-spin correlation in the center row of each strip can be written as a Toeplitz determinant with a generating function which is much more complicated than in Onsagers Ising model. The spontaneous magnetization in that row can be calculated numerically and the spin-spin correlation is shown to have two-dimensional Ising behavior.
In our previous works on infinite horizontal Ising strips of width $m$ alternating with layers of strings of Ising chains of length $n$, we found the surprising result that the specific heats are not much different for different values of $N$, the se
We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent $alpha$, in regimes of direct interest for current trapped ion experiments. Using larg
Recent numerical studies of the susceptibility of the three-dimensional Ising model with various interaction ranges have been analyzed with a crossover model based on renormalization-group matching theory. It is shown that the model yields an accurat
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu
We investigate the influence of the range of interactions in the two-dimensional bond percolation model, by means of Monte Carlo simulations. We locate the phase transitions for several interaction ranges, as expressed by the number $z$ of equivalent