ﻻ يوجد ملخص باللغة العربية
We investigate the possibility that multiple populations in globular clusters arise as a natural by-product of massive star-cluster formation. We use 3D radiative hydrodynamics simulations for the formation of young massive clusters to track their chemical self-enrichment during their first 5 Myr. These clusters form embedded within filamentary Giant Molecular Clouds by a combination of gas accretion and rapid merging of protoclusters. Chemical enrichment is a dynamic process happening as the young cluster assembles, so that the original (1P) and enriched (2P) subpopulations of stars form almost simultaneously. Here we test two simple and opposite extremes for the injection of enriched material into the intracluster gas: we assume either continuous injection in a way that tracks the star formation rate; or sudden injection by a single instantaneous event. Using helium abundance as a proxy for the enrichment, we find that realistic multiple population features can be reproduced by injecting a total helium mass amounting to a few percent of the clusters total mass. The differences in individual growth histories can lead to widely differing 1P/2P outcomes. These models suggest that dual or multiple populations can emerge rapidly in massive star clusters undergoing the typical mode of star cluster formation.
The most massive star clusters include several generations of stars with a different chemical composition (mainly revealed by an Na-O anti-correlation) while low-mass star clusters appear to be chemically homogeneous. We are investigating the chemica
A fraction of brightest cluster galaxies (BCGs) shows bright emission in the UV and the blue part of the optical spectrum, which has been interpreted as evidence of recent star formation. Most of these results are based on the analysis of broadband p
The enormous radiative and mechanical luminosities of massive stars impact a vast range of scales and processes, from the reionization of the universe, to the evolution of galaxies, to the regulation of the interstellar medium, to the formation of st
We present a detailed analysis of the radial distribution of light-element multiple populations (LE-MPs) in the massive and dense globular cluster M80 based on the combination of UV and optical Hubble Space Telescope data. Surprisingly, we find that