ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of the radial distribution of light-element multiple populations (LE-MPs) in the massive and dense globular cluster M80 based on the combination of UV and optical Hubble Space Telescope data. Surprisingly, we find that first generation stars (FG) are significantly more centrally concentrated than extreme second generation ones (SG) out to $sim 2.5 r_h$ from the cluster center. To understand the origin of such a peculiar behavior, we used a set of $N$-body simulations following the long-term dynamical evolution of LE-MPs. We find that, given the advanced dynamical state of the cluster, the observed difference does not depend on the primordial relative distributions of FG and SG stars. On the contrary, a difference of $sim 0.05-0.10 M_{odot}$ between the average masses of the two sub-populations is needed to account for the observed radial distributions. We argue that such a mass difference might be the result of the higher He abundance of SG stars (of the order of $Delta Ysim 0.05-0.06$) with respect to FG. Interestingly, we find that a similar He variation is necessary to reproduce the horizontal branch morphology of M80. These results demonstrate that differences in mass among LE-MPs, due to different He content, should be properly taken into account for a correct interpretation of their radial distribution, at least in dynamically evolved systems.
We combine MUSE spectroscopy and Hubble Space Telescope ultraviolet (UV) photometry to perform a study of the chemistry and dynamics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Previous studies have revealed three stellar populations
NGC 4833 is a metal-poor Galactic globular cluster (GC) whose multiple stellar populations present an extreme chemical composition. The Na-O anti-correlation is quite extended, which is in agreement with the long tail on the blue horizontal branch, a
Multiple populations in globular clusters are usually explained by the formation of stars out of material with a chemical composition that is polluted to different degrees by the ejecta of short-lived, massive stars of various type. Among other thing
Nearly all Galactic globular clusters host stars that display characteristic abundance anti-correlations, like the O-rich/Na-poor pattern typical of field halo stars, together with O-poor/Na-rich additional components. A recent spectroscopic investig
We present a detailed study of the radial distribution of the multiple populations identified in the Galactic globular cluster omega Cen. We used both space-based images (ACS/WFC and WFPC2) and ground-based images (FORS1@VLT and
[email protected] ESO telescop