ﻻ يوجد ملخص باللغة العربية
The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability.
Consider an infinite system [partial_tu_t(x)=(mathscr{L}u_t)(x)+ sigmabigl(u_t(x)bigr)partial_tB_t(x)] of interacting It^{o} diffusions, started at a nonnegative deterministic bounded initial profile. We study local and global features of the solutio
In this paper we consider the Cauchy problem for $2m$-order stochastic partial differential equations of parabolic type in a class of stochastic Hoelder spaces. The Hoelder estimates of solutions and their spatial derivatives up to order $2m$ are obt
We study the nonlinear stochastic heat equation driven by space-time white noise in the case that the initial datum $u_0$ is a (possibly signed) measure. In this case, one cannot obtain a mild random-field solution in the usual sense. We prove instea
The aim of this paper is to study the asymptotic properties of the maximum likelihood estimator (MLE) of the drift coefficient for fractional stochastic heat equation driven by an additive space-time noise. We consider the traditional for stochastic
We present several results on solvability in Sobolev spaces $W^{1}_{p}$ of SPDEs in divergence form in the whole space.